NASA TECHNICAL -554
TRANSLATION o ﬁ\

— o

- =:
g — r
o o= 3
— P ra—51
= —
< =3
= = .
; -—==;

OPTIMAL TRANSFERS BETWEEN
CLOSE ELLIPTICAL ORBITS

by J. P. Mavec

/
Office National D’Etudes et de Recherches Ae%as‘batz'czles (ONERA)
Publication No. 121, Chatillon, France, 1967

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. « SEPTEMBER 1969



TECH LIBRARY KAFB, NM

T

8959

[P RV FY

OPTIMAL TRANSFERS BETWEEN CLOSE ELLIPTICAL ORBITS

By J. P. Marec

Translation of "Transferts Optimaux Entre Orbites
Elliptiques Proches!'
ONERA, Publication No. 121, Chatillon,
France

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific ond Technical Information
Springfield, Virginia 22151 - CFST! price $3.00






TABLE OF CONTENTS

NOTATIONS.
INTRODUCTION.

I.

II.

GENERAL STUDY.
I,1. Contensou's Theory of the '"Maneuverability Domain'" and
Pontryagin's '"Maximum Principle.

1,1.1. Definitions.
I,1.2. Statement of the optimization problem.
I,1.3. Simplified demonstration of the "Maximum principle'’.
I1,1.4. Interpretation of the adjoint vector.
I,1.5. The Hamiltonian first integral.
I,2. Problem of Optimal Transfers.
I,2.1. Definitions.
1,2.2. Propulsion systems.
1,2.3, Cases of any gravity field.
1,2.4, Cases of central field.
I,3. Transfers Between Close Orbits.
I,3.1. Linearization of the problem.
1,3.2. Determination of the optimal thrust.as a function of the
adjoint.
1,3.3. Determination of the variations of the orbital elements as
a function of the adjoint (integration).
1,3.4. Finding the adjoint beginning with the variations of the
orbital elements (inversion).
1,3.5. Criterion of comparison of the performances of propulsion

systems (Sl) and (SZ).

I,4. General Results Uncoupling.

Pages

—

59

62

63

I1,4.1. Cases of propulsion systems (82) (modulable ejection velocity) .64

1,4.2. Cases of propulsion systems (Sl) (Constant ejection velocity). 67

PARTICULAR PROBLEMS.

II1,1. Optimal Infinitesimal Variation of the Semi-Major Axis.
I1,1.1. Introduction.
II1,1.2. Optimal thrust.
I1,1.3. Optimal "Dilatation" of the orbit. Consumption.
I1,1.4. Conclusion.

I1,2. Optimal Infinitesimal Rotation of the Plane of the Orbit.
I1,2.1. Introduction.
I1,2.2. Optimal thrust.
I1,2.3. Optimal rotation. Consumption.
11,2.4. Conclusion.

iii

72
73
73
73
77
84

84
84
85
88
103



Pages

II,3. Optimal Transfers Between Close Coplanar Circular Orbits 104
I1,3.1. Introduction. 104
11,3.2. Optimal thrust. 105
11,3.3. Optimal ''dilatation' of the radius of the circular orbit. 109

Consumption. 112
11,3.4. Conclusion. 136

I1,4. Plane Optimal Transfers of the Hohmann Type Between Non-

Intersecting Direct, Co-Axial, Close Near-Circular Orbits. 138
I1,4.1. Introduction. 138
II1,4.2. Reference to the results of the linearized study. 139
11,4.3. Higher order study. 142
II1,4.4. Near-Optimal solutions. 155
11,4.5. Conclusion. 156

11,5. Optimal Impulse Transfers Between Close Near-Circular Orbits,

Coplanar or Non-Coplanar. 156
11,5.1. Introduction. 156
11,5.2. Transfers between near-circular orbits. 157
11,5.3. Transfers between elliptical orbits of slight eccentricity. 174

' 192

11,5.4. Conclusion.

II,6. Optimal, Impulse, Long-Duration Rendezvous Between Close Near- 193
Circular Orbits, Coplanar or Non-Coplanar.

I11,6.1. Introduction. 193

11,6.2. Accessible domain. 194
11,6.3. Degeneration of the optimal linearized solutions. Solutions

with a minimal number of impulses. 203

11,6.4. Conclusion. 220

CONCLUSION. 221

REFERENCES. 222

APPENDICES. 226

The numbers of the equatiens and figures refer to a definite

chapter.
When they are quoted in the text, they are only preceded by a

chapter number if the chapter is not the one in which they are quoted.
The numbers in brackets refer to “the references.

The present publication was the object of a Doctoral Thesis defended 13
June 1967 at the Faculty of Sciences of Paris.

iv



(¢4

AT W W »®» D>

~
-
e e

oy Oy Moy SO OO0V

oy
)}

Lo
[
o
=]

~
se ee

@y © QMY YT

NOTAT IONS

apogee,
accelerating impulse,
accelerating thrust,

: semi-major axis,

vu/b

matrix defined in (1,3 - 58),
semi-minor axis,
characteristic velocity [system (Sl)],

A"C : consummation vector defined in (ii,5 -19),

fixed vector (line vecotr),

: maneuverability domain,
: decelerating impulse,

directrix curve,

: decelerating thrust,

: thrust direction,

energy (per unit of mass),

: perigee vector,

eccentricity,

- .
: projection of e on to the plane of reference, with components a and B

0x and d;.

Ae// ; composed of A® parallel to

plane

Ael : composed of ge

thrust,
front in the strict sense,
front in the broad sense,

: second member of the "equations of movement' (column vector),
: matrix defined in (I,3 - 67),

center of mass,

acceleration of gravitation,
Hamiltonian,

: kinetic moment (per unit of mass),

specific impulse,

inclination,
index of performance [systems (82)],

»

Aj : rotation vector of the plane of the orbit,
: matrix given in appendix 3,
straight ascent (geocentric) or ecliptic longitude

>
plane perpendicular to Aj,

(heliocentric),



©x, D)
©0x, D)

locus of the extremity E of e
plan

el
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: average anomaly,

: mobile,

: mass,

: number of revolutions,

: average movement,

: number of maximal thrust arcs,

: number of maximal thrust arcs per revolution,

S8 2=

1 Ofe
- —_— - . e
0(e) : order of e( e > Otermlnal limit # 0)
Ole
o(e) : order above € (-i-i T )

(0) : osculating orbit,
{0 ) : osculating directrix orbit,
p

P : power,
P : perigee,
P : pilot mobile,
(P) : efficiency curve,

N

: kinematic adjoint (line vector),

E : adjoint vector (line vector),
p : '"parameter" of the orbit,
EV: efficiency vector (line vector),
q : delivery,
q = P, /P>
% : vector defined in (1,3 - 29),
E : vector radius,
(S): general propulsion system,
(Sl): propulsion system with constant ejection velocity and limited thrust,
(5,): propulsion system with modulable ejection velocity and limited power,
2J)+ PTOP y p
S : index of performance,
T : period,

(1) : trajectory,

AT : defined in (11,6 - 5),
-U : potential
(x) : unit step = 1/2 (1 + sign xJ,

: "command domain',

: command vector,
u 1l - ¢ v
: eccentric anomaly, (tg 5 = V%—:—E»tg EJ.

< £ €y <

: velocity,
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Viviani's Window,

point of Viviani’s Window,
true anomaly,

ejection velocity,

L - L,

""kinematic state! (column vector),
"state" vector (column vector),

-

h/h,

. k3 > -
: projection of Z on to the plane of reference, with components & and n

- -
onto 0 x and O y,
fixed axes,
rotating axes,
> >
¥ - e,
> >
y o+ e,

thrust acceleration (column vector),

.

M _

total variation,

difference between the '"state' and the 'nominal state",
> >,

(0 x, a3,

transfer value,

reduced variation,
>

=
y = 2
commutation function,

: argument,

AX/F___At,
max

straight ascent (geocentric) or ecliptic (heliocentric) of the perigee,
(constant of universal gravitation) x (mass of attracting body),

i1

- >t

T 4P,

sphere with center M and radius of unity,

state variable replacing time t,

specific variation,

angle to the center of the thrust arcs,

angle of thrust with the local horizontal,

: perigee argument,
: Straight ascent from the ascending node,

initial,
final,

: nominal,

optimal,
transposition of one matrix,

nabla operator 3317. (line operator).
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OPTIMAL TRANSFERS BETWEEN CLOSE ELLIPTICAL ORBITS
Jean-Pierre Marec

ABSTRACT. The optimal rendezvous and transfers {minimum mass
consumption for a given duration) between close elliptical
orbits are analyzed in the case of propulsion systems character-
ized by a constant ejection velocity and a limited thrust; the
performance obtained is compared to the performance of propul-
sion systems characterized by a modulable thrust and a limited
power.

The choice of the orbital elements as state components, added
to the linearization hypothesis, leads to important simplifi-
cations (the adjoint vector is constant, in particular). This
gives some general results concerning, among others things, the
number of maximum thrust arcs per revolution, the singular cases
when the linearized solution is not unique but degenerates into
a large number of solutions and the '"'induction' phenomena
(non-imposed variations of some orbital elements, induced by
the imposed variations of the other orbital elements).

The solution brings in the notions of ''efficiency vector"
or '""primer vector' (indicating the direction of the optimal
thrust), of ''directrix orbit" (locus in the absolute axes
reference system of the efficiency vector extremity originating
at the mobile) and of "efficiency curve' (locus of this extremity
in the rotating axes system).

The analytical solution is developed in some particular
cases presenting an obvious practical interest:

- optimal infinitely small variation of the semi-major axis,

- optimal infinitely small rotation of the orbital plane,

- optimal transfers between close coplanar circular orbits,

- plane optimal transfers of the Hohmann type between non-
intersecting direct, co-axial, close near-circular orbits
(higher order analysis),

- optimal transfers and optima] long-duration rendezvous between
coplanar or non coplanar, close near-circular orbits.

INTRODUCTION

The problem of optimal transfers and rendezvous between orbits is ./5%*
fundametal in space dynamics.

These relatively new studies, at one and the same time, call on class-

"Celestial Mechanics'" [1] and for modern optimization methods [2-6]
derived from the "Calculus of Variations'.

The analytical results obtained, the very first of which date, back to
1925 [7], concern first of all optimal transfers of indefinite duration in a

* Numbers in the margin indicate pagination in the foreign text.
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central field of gravitation made by using a propulsion system with a constant
ejection velocity, generally capable of furnishing impulses, The initial
studies [7-9] assumed the number of impulses fixed in advance, while in
recent studies [4,10-19], this number generally constitutes one of the particu-
larly important results [20] of optimization.

The recent progress achieved in this field is essentially due to the use
of orbital elements as components of state, of the characteristics of velocity
as an independent variable and to the use of the notion of Contensou's "maneu-
verability domain’ [2-4].

The problem of optimal transfers of fixed duration between distant orbits
remains very difficult to resolve, although a certain number of general results
have been obtained [21-30].

In the case of propulsion systems with constant ejection velocity, the
singular arcs with "intermediate thrust'" [31-33] have been the object of par-
ticular attention.

On the other hand, in the case of propulsion systems with 'weak accelera-
tion" (electrical propulsion), there exist numerous numerical studies [34,35].

However, clear progress in the analytical study of the problem has been
made in the relatively favorable case of a propulsion system with limited power
and with modulable ejection velocity, where Ross and Leitmann [36], and later
Edelbaum [37], have given the solution,respectively,of the most general trans-
fer and of the most general rendezZvous between close elliptical orbits. On
the other hand Gobetz has studied the case of transfer between close circular
orbits [38] and more recently of rendezvous between close near-circular
orbits [39] for the same type of propulsor.

By integration Edelbaum has also been able to extend the results of a
linearized study to certain transfers between distant orbits for a large number

of revolutions [40].

In the case of a propulsion system with Iimited power and constant ejec-
tion velocity (ultimately in the case of a propulsion system capable of deliver-
ing impulses), the study remains tricky even for close orbits.

Except for the excellent study of McIntyre and Crocco, concerning trans-
fers between close coplanar circular orbits [41-44], this problem has not
been studied very much up to the present time.

The present publication summarizes and completes the results obtained by
the author on this subject [45-47]. The case of optimal impulse transfers /6
between close non-toplanar near-circular orbits [47] has been studied in a
parallel manner by Gobetz, Washington and Edelbaum [48-49],

The analytical study of infinitesimal transfers is of interest for several
reasons.



First of all,such transfers have an intrinsic interest which should not
be neglected. They are met very often in practice. They are evidently associ-
ated with problems of correcting trajectories [50, 51].

On the other hand, there exists a qualitative and even quantitative
agreement which is acceptable between the bptimal solution concerning a com-
pleted transfer, calculated numerically, and the solution of the linearized
problem associated with this transfer, obtained analytically, at least if the
departure and arrival orbits are not extremely far apart.

Finally, the linearized solution constitutes an excellent first approxima-
tion for the numerical calculation of the optimal solution by successive
approximations. Its use considerably reduces the number of iterations and can

avoid converging upon unihteresting, local optimums by furnishing on departure
a command law very close to the optimal law [55].

* * %

The present study includes two Parts:

The First Part is a general study in which the method of optimization is
explained and applied to the problem of optimal infinitesimal transfers.

The Second Part treats a certain number of particular cases for which the
analytical study has been more progressive and which offer evident practical
interest.



I - GENERAL STUDY

After briefly referring to the method of optimization used, the general /7
problem of optimal transfers is defined and studied particularly in the case
of a central gravitational field with slight separations (linearization). A
certain number of general results are obtained, notably concerning uncoupling
between the optimal variations of the different elements of the orbit.

I,1. CONTENSOU'S THEORY OF THE ''MANEUVERABILITY DOMAIN'' AND PONTRYAGIN'S
YMAX IMUM PRINCIPLE"

There is no question of giving here a complete and rigorous demonstration
of Pontryagin's "Maximum Principle" as it appears, for example, in [5] and [6],
but merely of reviewing its declaration and giving a simplified demonstration
of it in the linear case, by referring to Contensou's optimization theory [2-4].
This demonstration is enough for a first order study of transfers betwean close
orbits.

1,1.1. Definitions

Let an evolving system be defined at every instant t by the datum of the

- . .
"gtate'" x, column vector with n components X (i=1, 2, ..., n) satisfying
the "equations of movemert':
—_ 2 i — -
V=12x = F(xlu’:é) (n
-S>
where u is the "command'" vector with r components Uy k=1, 2, ..., 1),

arbritrary time functions, not necessarily continuous (which makes the applica-
tion of the traditional '"calculus of variations" tricky)., possiblv subject to

. - .
restraints of inequality forcing the vector extremity u to belong to a certain
"eommand domain' U,

« e U. (2)

3 . + . -
If the initial state X, is fixed:

— —

X (t,) = %o (3)
and 1f an admissible law of command ﬁ(t) is given a priori, the integration of
the system {1) beginning with the initial instant t, generally permits a

. . . . > .
determination of the "trajectory" (7), i.e. the state x(t) with each later /8
instant t and in particular at the final, fixed instant tf (the final state

>
X

£ is supposed to be completely free for the moment).



The linear function* of the components of the final state (index of

performance): —
S = c.x; (4)

->
(whe?e.c is a given line vector with n components C.) then takes on a very
definite value. *

If now the choice of the law of command 3(t) in U is arbritrary, S is a
function of this law and it is possible to envisage the problem of optimization
below:

1,1.2. Statement of the Problem of Optimization

To determine the admissible law(s) of command K(t)[i.e. referring to
restraint (2)] which Zocally maximize(s) the index of performance S.

For such a law there corresponds an optimal trajectory (7) leading to a
point(Fl, F2 or FS) of the “frontier in the broad sense'! F'(tf) of the

"accessible domain" A(t,.) at the moment t,. [2-4] (Figure 1).

Fig. 1. Accessible Domain.

*This condition is not as restrictive as it appears. It is possible to
adapt most problems of optimization to this case.



Then it is necessary to compare directly with each other the different /9
locally optimal solutions such as F F2 and F3, but only to retain the one

1’

(Fl) which assures the absolute maximum of the index of performance written S.
Solutions such as FS’ which do not correspond to a point of the "frontier in
the strict sense" F(tf) are thus automatically eliminated.

In general the application of the "maximum principle' introduces supple-
mentary parasitic solutions which correspond to local minima (or to passes)
such as F, and Fyg [11].

— ——a—

The suitable choice of a trajectory x (&) + &x (k) close to the trajectory

;(t) meeting to one of these points,permits an increase in S to be obtained

only on a higher order than |5+x‘.

1,1.3. Simplified Demonstration of the '"Maximum Principle’'.

I,1.3.1. "Maneuverability domain''.

R , > . > . .
The "maneuverability domain'' D(x, t) in the state x,at the instant t,is

made up by the assembly of points X = V of the hodograph space among which the
functioning point may be chosen.

The "maneuverability domain D(;, t) is therefore the transform of the
"command domain' U defined above, through the transformation of I == %
defined by equation (1).

The 'command domain" of Pontryagin's theory is a useful notion for the
practical application of the theory of optimization. For the demonstrations and
geometrical interpretation of the results,it is preferable to refer to the
notion of Contensou's "maneuverability domain'.

The choice of V inside the ""maneuverability domain'" is completely free.
Therefore it is particularly independént of previous choices: the vector V
i8 not limited to any kind of continuity.

On the other hand, we presuppose,as fulfilled,the conditions of regularity
required in order to write the different equations which follow.

1,1.3.2. Statement of the '""Maximum Principle’.

- . . + - -
A necessary condition for the trajectory x (t) to be optimal is that at

. > . . . > .
every moment the vector V is chosen in the domain D(x, t) in such a way that
the Hamiltonian:

H= 5.V (5)



> ., . . . .
is maximal. p is a line vector with n components P;» "adjoint" to the state

;, defined in the following way:

3, X and t being given, the maximal value /J‘::;?,Dh of H in reference

to V is only a function of 3, ;, t (Figure 2).

a b

Fig. 2. Maneuverability Domain. Maximum Condition. /10

- . g - . .
The adjoint vector p must satisfy the "adjoint system':

__'J._~__ * _ a a senny a (6)
p=-V.H /V— [ax, 'axz' ax,,])

and the final conditions:

- —
P = c
(7)
The maximum condition shows that only some points of the front of the /11

maneuverability domain D are used, and more precisely points common to the
frontier of the D domain and the small convex contour encircling D (Figures
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Fig. 3. "Convexization' of the Maneuverability Domain.
1,1.3.3. Simplified demonstration.

Let there be a trajectory ;(t), not necessartly optimal, corresponding to
the choice V(t) of V inside the domain D(%, t) (Figure 4). It is possible to

define an adjoint E(t), as in the preceding paragraph, by integrating backward
equation (6) starting from the conditions of (7); (H* is replaced by H and

V* by V + 5*v1).

Let 3?/2) + 6 (t) be a neighboring trajectory. We propose the

evaluation:
70’&_ 7.6%) = P-6X + P8V = ~(V.H). 6%+ 5. 8T 5. I ¢ 5. I (8)
a*vz can be great (commutation, Figure 6), but
P8V =0t =(V.H) S+ o0 (I6%]) (9)
where o(e) signifies: order greater than € (§%£§l 15:;5’€9 Therefore:
-2 (7:6%) = 56V + 5. 5%, + 0 (6] 10)




where ,576'7;20 and 5=V, <0 by definition (Figure 4).

Fig. 4., Maneuverability Domains Relating to Two Neighboring States.

The maximum condition is a necessary condition for trajectory i(t) to be /12
optimal.

Let us just call t, the last moment beyond which the maximum condition

2
(cﬁ/)l = 0) is always realized [éo=0 < é < b= /) and t, a moment slightly

before (t2 -ty = small) (Figure 5).

Beginning with the instant t) let us choose a neighboring trajectory such
that 6+V3 = 0 and let us integrate (10) from t; to t.. The increase in the

index of performance S is:

&, e 173
85 = .68 = . 6%, = p7.0F, ,f,a*.az/,dtjf o(ls%]) dt = an
———

[ &y

T(B9V) o an tor oo /“ra (/o’o?/) ot .
¢

7

[N



Fig. 5. Demonstration of the Necessary Condition.
Since the evaluation of this last integral is tricky in a general case,

the necessary condition will only be demonstrated in the simple cases of the
"linear systems' of the type:

F=F=a(t)X+B(a,¢ (12)
where a(t) is a tensor.

. . . .
In this case the integral is zero, for H is linear in x when we pass
from point M to point N of Figure 4. As a matter of fact u is the same in

both of these points, therefore T is linear in x.

Thus

S=1t(5.8V,
¢ T/'D 14ly mean for &,,é, >0 (13)

Therefore S can be increased by choosing a neighboring trajectory. There- /13
fore the initial trajectory is not optimal,

In general the maximum condition is not a sufficient condition.
Let us just suppose that it is fulfilled at every instant, i.e. that

o =
6V1 = 0.

10



The integration of (10) from t, to tg gives:

—— & £
8S=[.0%; = B o7, + [ ’,atazatf o (J6x])ale. (14)
‘—""—‘zo 0 &

Fig. 6. Commutation.

We shall consider a neighboring trajectory obtained by choosing 6+V3 S0
that [i‘,':ﬁ/;/:o ({57;/) This is possible,for example, by taking the point Q

of Figure 4 on the surface of the domain p(3?+3;;é)and near point N, on the
portions of the trajectory corresponding to the case of Figure 2a, and by tak-
ing Q and N on the portions corresponding to the case of Figure 2b. The two
integrals of (14) can be of the same order. We see that S can undergo a varia-
tion 85 of which the sign is not determined and can particularly be increased
8S > 0, but only on an order greater than |6x|. In general the application of
the maximum principle can lead to parasitic solutions such as F4 and F5 (Figure

1).

However, the maximum condition is a sufficient condition (therefore a /14
necessary and sufficient condition) when the second integral of (14) is zero.

11



Thus choosing 6v3 in any .ddmissible manner and so that the neighboring trajec-
tory ¢ (¢£) + I [Z) is not too far away from the nominal trajectory K(t),
equation (14) shows that &S is always < 0 since iTTCrV:' is always < 0,

Therefore the maximum condition is mnecessary and sufficient for the
"linear systems" of type (12).

1,1.3.4. Conclusion.

A problem of optimization stated in §I,1.2. is thus resolved in this way:
the application of the maximum condition (absolute maximum H at every instant
, > . .
with reference to VE D therefore in reference to u€ U) furnishes the optimal

* >
command V or u* which is carried into the system (1) of the equations of
movement and into the adjoint system (6). These 2n differential equations are
integrated, consideration being given to the 2n conditions with limits (3) and

(7.
It is important to note that if the component X g of the final state is
indifferent (therefore is not fixed and does not take a part in S), the com-
. % .
ponent Ci corresponding to C, and therefore the component P corresponding to

the final adjoint ;f’ is zero.

On the other hand it is possible to demonstrate that if the component X ¢
of the final state is fixed, the component Pig corresponding to the final

adjoint is not imposed a priori. The condition i of (7) is replaced by the
condition: Xy fixed, which does not modify the number of conditions at the

limits.
1,1.4. Interpretation of the Adjoint Vector
Equations (11) and (14) show that at_every moment the adjoint is the

coefficient of influence of a variation &x of the state on the index of per-
formance S. If certain components written Xif of the final state are fixed,

R . .. > . . , , .

it is true only if the variation 8x is compatible with these final restraints.
Let us note that the adjoint vector E is only defined by an approximate

multiplicative factor by the homogeneous system (6) and the maximum S conditionm.

As a matter of fact it is equivalent to maximizing S or kS(k > 0 arbritrary),

. . > > . . . .

i.e. to choosing ¢ or kc. Therefore equation (7) constitutes the normalization

. R o
condition of the adjoint p.

12



1,1.5. First Integral of the Hamiltonian.

In §1,1.3.2. we saw that the optimal Hamiltonian H* jis a function of

>+ . . . . . .
P, x and t. We propose to calculate its derivative with respect to time in an
optimal trajectory:

dH(PIEL) AP [y, 9X, OHT
7

dE ae de T oz (13)
from which, taking (6) into consideration:
dH*_ dH™ .
dé "ot (16)

When the maneuverability domain D(;, t) does not depend on time, gg': 0

we get the Hamiltonian first integral:

H* - cte, (17)

The method of optimization described above is going to be applied at
present to the problem of optimal transfers and more exactly to the problem of
close optimal transfers (linear case).

1,2. PROBLEM OF OPTIMAL TRANSFERS

Before approaching the particular case of transfers between close orbits,
it is useful to provide a few results about the general problem of optimal
transfers.

After defining the notion of transfer and analyzing the different propul-
sion systems, Maximum Principle is applied to optimal transfers in any field
of gravitation, which clearly illustrates the differences between the solutions
corresponding to varied propulsion systems.

However,all of these solutions call on the same notion of '"vector effi-

ciency" ﬁ; (Lawden's "first vector'" [21] ), indicating the optimal direction

of thrust, which is widely used and interpreted geometrically: this vector has
its origin in the mobile M and as its extremity a 'pilot mobile P, close to M,
subject to the same thrust acceleration and to the same gravitational field

as M, and describing a ''directrix curve" (D) close to the trajectory (7) of M.

13
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When the gravitational field does not depend on time, the case of trans-
fers without rendezvous is envisaged.

The hypothesis of the central field is then made to allow further advance
in the analytical study, In this case the benefit of employing elements of
the Keplerian orbit (0) osculating to the trajectory at every instant as com-
ponents of state is evident: The notion of "directrix orbit" (Op) gives an

interesting interpretation of the law of optimal thrust.
1,2.1. Definitions.

In a very general way we call "transfer" (with rendezvous of a mobile
M of variable mass subject to a gravitation field Z(2¢) = Gragd U/ (7¢)

. - L >
given as derived from the potential -U(r, t) and to a thrust acceleration y

{command) any change of position T and of velocity V of this mobile between
two fixed moments to and tf (Figure 1), the change produced by the simple

natural movement (? = 0) capable of being qualified as a zero cost transfer.

If the change E does not depend on the time t, it is possible to define
generalized "orbits" corresponding to the natural movements of mobiles ¥

s ‘s > s s L o> .
launched from initial positions T, with initial velocities Vo’ such an "orbit"

>

depending only on the initial conditions ;Z} VO. It is then possible to define

transfers without rendezvous, when only the "final orbit'" at the instant te is

imposed, without the final position M. of the mobile on this "orbit" being
imposed.

The state ; of the mobile
M at the instant t can be
defined by the data of the

. . =
kinematic elements ¥, V and of
mass m. Therefore transfer is
the passage of the state

T,V t i h

ro, or My at instant to to the
tate ., V., m,
S £ e °F
tf (the final "kinematic'" state

>3 >

Tes Vf possibly being partially

indetermined).

at the instant

It is obviously desirable
to achieve the transfer pre-
viously defined in the most
economical manner possible,
economy being capable of

Fig. 1. Transfer.
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definition as a function of a larger or small number of criteria.

The criterion most often retained is that of the ecopomy of the propulsive
ejected by the rocket to produce the thrust acceleration y. As a matter of
fact let us return to the propulsion equation:

where F is the thrust force, q = -m, the feed of the propulsive, and W the
velocity of ejection,

Thus it is a matter in each mission envisaged of minimizing the consump-
tion of propulsive /Am}:/m, -,no/ for a fixed time period ¢ = ép—¢,

1,2.2, Propulsion Systems

Without going into detail on present and future propulsion systems, we /17
here have a matter of defining a simple mathematical model, unique if possible,
describing all of them and capable of being adapted to each particular case by
a simple modification of parameters.

In the proposed model (S), the choice of the direction B of thrust is
supposed to be entirely free and the two parameters of command remaining F
(magnitude of thrust) and q (feed) must be chosen inside the '"command domain"
U represented in Figure 2a.

In this model (S) the jet power:

FW _F?

7 . 2
=L [~ Wo'=2"*== 2
3 (~ri) 2 " 27 (2)
is limited:
P K Praax (3)
. ”~
whence the arc of frontier parabola AB (or KE).
The ejection velocity:
= -
W= o (4)
as well as the feed q have upper limits:
W € Winax (5)
G S Gmax (6)

whence the rectilinear. fronts OA and BD.

15
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Fig. 2. Propulsion Systems.

It is likewise possible to
impose a lower limit Wmin > 0 to

the ejection velocity
W 2> Wmin (7)

which adds a rectilinear frontier
0C. Point C can be found on the

arc AB or outside of this arc; the

theoretical study is the same.

Let us note that the magnitude
F of thrust is automatically limited
at the top:

F< Fm,—mm/ Al ®

This model (S) is well adapted
to electrical propulsion systems
evolved where the jet power is
limited by the power of the elec-
tric generator, where the ejection
velocity, modulable to a certain
degree, cannot exceed a certain
maximal value (nor often go below
a certain minimal value) for a /18
definite ejector under penalty of
seeing the efficiency of the
ejector considerably diminished,
and finally where the propulsive
feed is limited by the pump system
(or even by the ion production
system in the case of an ionic
propulsor).

The model (52) which is de-
rived from model (S) by making

w =00 q”]ax:oo , Wml'n=0 (9)

max

correspond to an tdealized electric
propulsor (Figure 2b) often consid-
ered in theoretical studies, where
the only limitation bears on the
jet power.



Finally the model (Sl) which is derived from the model (S) by making:
szx = ”';”sw (10)

corresponds at one and the same time to electric propulsors with a non-modulable
ejection velocity and to traditional chemical propulsors (liquids, powders) or
to a nuclear rocket (Figure 2c). Thus these different types of propulsors are
distinguished by orders of magnitude of specific impulse Isp = Wy/y and of

maximal thrust F .
max

While for traditional chemical propulsors specific impuise is of the
order of 300 s (powders) or 400 s (liquids) and for the nuclear rocket of the
order of 800 s, for electric propulsors specific impulse can reach very high
values (10,000 s and even more).

On the other hand, maximal thrust acceleration ¥, , =£,, /7 , which is
of g or several g for traditional propulsors, (systems called: "aigh thrust')

4 -3
to 10

is very weak (10~ g) for electric propulsors (systems called: '"Zow

thrust').
1,2.3. Case of any Field of Gravitation.

The state (?} V; m) and the command (ﬁ, F, q) having been defined in the
above paragraphs, let us apply the Maximum Principle to the problem of transfer

. . > > X
envisaged above, consisting of passage from the state r,V ,m at a fixed
. > > . . . o o >
instant tO to the state r_, Vf, me at a definite instant 1:f (rf, Vf may be

partially undetermined) with the minimum consumption [Am/=/my- N

The "equations of movement' are very simple:

=V (11)
(properly named equations of movement) . i
VYRR =L D7 (7)) (12)
(consumption equation) ﬁ7=="9 (13)

Then the Hamiltonian is written:

— — — T . —_— T F ®, —
H=pr-r +pvoV+p,,,m=p,-V+py-/rFD*g/—pmq (14)
> o . > >
where P.> P,» P, are adjoint to elements r, V, m of state.

The performance index to be maximized is the final mass: /19

17



S = m;. (15)

Therefore it is necessary to maximize the Hamiltonian at every instant in

>
reference to the command D, F,q.

The optimal direction D* of the thrust is obviously that of the efficiency

>
vector p,

b= Pv///"v/' (16)
Then the Hamiltonian becomes:
H==pmq f_—/'—:?i:/F + (terms independent of q and F). (17)

The adjoint system in which the optimal direction of thrust has been
carried is written:

= —_— 7 o .
= — Dy - [V .g r] ( = 3, ; line operator) (18)
pv = —pr (19)
. pviF
Yy = _/.;7?. (20)

From this is deducted:
_O’F(ﬂ?pm) = /7.7,0m * mp.m ——‘//Pv _—‘_-—' N (21)

In succession we envisage the cases of the propulsion systems (S), (Sz)

and (Sl), thus completing the results obtained in {22].
,2.3.1. Propulsion system (S).

At any instant t, H = ct® is the equation of a straight lime of the

18




plane q, F, of fixed slope um/lP+§l and with ordinate originally proportional
to H (the coefficient of pfoportionality m/[p+§l being positive). Therefore

maximizing H comes down to maximizing this ordinate at its origin by choosing
the point of functioning q, F suitably. The result depends on the slope of
the straight line (Figure 3):

1. 1f .7@27 > Wingx » point 0 should be used (zero thrust, ballistic
Pv
arc).

From {21) we deduce that:

mp,, =C'[27]. (22)

Thus slope mpm/]p+vl varies only by ]p+§].

2. If ﬁ?:
7] ry

max , it is indeterminate.

F |
Vi

3.

Q¢

g
Fig. 3. Optimal Point of Functioning.
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This indetermination is not annoying if the equality only occurs at in- /20
stant t (commutation). On the other hand if the equality takes place during
a finite interval of time tt, the amplification of the Maximum Principle

does not furnish the command since every point of segment OA is a priori suita-
ble. Command is obtained directly by writing that the slope is constant for
tlt2 and equal to Wmax (singular solution [31-33]) or:

) _ P
/7] = 5= (25)

From (21) the first integral is therefore deduced:

Mmp,, =C¥[27] (24)
from which, by (23),
/,07/ = Cte[27] (25)
and finally the first integral:
Br-pr==pipr=0. (26)

Therefore the vectors 5& and Er are orthogonal.
The corresponding arcs are called: "intermediate thrust arcs”.

3. If M4"3x ;nﬁj7 < W, ox point A must be used (constant thrust FA). /21
Pv

As _iz_(znfzn)‘> 0, MP,, increases. [sic]

VKB VVE mpPm Wonax point M of the parabola arc AB (or

4. If prax <
N/
AC) must be used (modulated thrust FZ_Eﬁf}fi —"] ). Then the first integral
m”n
is deduced from this:
772D = ctel27) (27)

is proportional to the vector of efficiency p+§.

1Pm (3%?2, }g?) point B (or C) must be used (con-

5. Finally if ’7/;_.;,/‘ < max

stant thrust F ).
max

>
then vy =

=R Res1%

20



Thus an optimal trajectory ,except for singular cases, is composed of a
succession {when the slope mpm/ipvl varies) of ballistic arcs (F = 0), of con-

stant thrust arcs at maximal ejection velocity (F = FA), of modulated thrust
arcs |/ < £ < min(Fp ,F)] and of maximal thrust arcs [F = min (FB  Fe)]-

1,2.3.2. Particular case of propulsion systems (SZ)‘

In this case it is convenient to define a position of M on the OB « arc
(Figure 2b) by the datum of the thrust F or rather of the thrust acceleration

Yy = F/ -
This choice is of particular interest; as a matter of fact the integration
of the equation:
B 1y
12 2Prmax (28)

between the times to and t furnishes:

g1 __YJ (29)
m 177, Pmax
where
7 (" yrae
=7 ). d (30)

is a performance index which increases monotonously when the mass m diminishes.

Therefore this index can advantageously replace the mass m in order to
express the expense of the operation.

The new equation of consumption is:
2
J=-§—- (31)

The equations of movement (11), (12) and (31) only contain the command ?.

The canonical transformation: fﬁ?}pna —> ﬂj;f59 is such that [25,30]:

me
P dimr = By d T (=—pJ 2 dm) (32)

”72
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whence:

- Pmax
Pm == Ps 7" (33)/22

Now, since J does not occur in the second members of the equations of movement,

ﬁJ = 0 and

since this is a matter of maximizing S = —Jf.

Therefore we again find the first integral (27) where by choice (34), the
constant is equal to Pmax and the optimal acceleration is given simply by:

—»

¥ =5, (35)

The thrust acceleration 18 equal to the vector of efficiency.
1,2.3.3. Particular case of propulsion systems (S]).

Since the ejection velocity W is constant, the integration:

m _F
W == ¥ (36)
between the moments to and t furnishes:
m_
where
¢

&

is the "characteristic velocity" which increases monotonously when the mass m
diminishes and which can therefore advantageously replace the mass m to
express the cost of the operation.

The canonical transformation /ﬁv;pm) = {C:;Q) is such that:

Pm dm = p, dC /: - P —‘,Zlnﬂ) (39)
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from which

40
Pm=_—/7_7—pc' (40)
The thrust law is therefore given by
F=Frmae U(B) (41)
where
U/@) - 77'/‘51'9178 @
2
is the degree of unity and:
® = /p;/ * p (42)
is the commutation function.
The thrust law 18 one of "all or wnothing” ( F = {72?’x according to
which @ =20 ).
te
On the ballistic arcs, mp == Cte [equation (22)], and therefore D, = c .
On the propulsed arcs ;%C[kzpm>,> 17 , therefore mp increases and P,
decreases.
Optimal Ejection Velocity. /23

The optimal realization of a mission given with the aid of a propulsion
system (82) leads to a utilization of thrusts such that the representatlve

point M, of the command diagram describes, for exawnle, arc QR (Figure 4).

2

Realization of the same mission with a propulsion system (Sl) of the same
installed power P ax 20d of constant ejection velocity W lead to a utilization
of the points O or M.

This constant ejection velocity W (generally) remains at the choice of the
user (choice of the ejector to adapt to the energy conversion system).

The problem is choosing the velocity W in the optimal manner (W*), that is
to say such that the consumption of propulsive is minimal for the given mission
[35]. The corresponding optimal propulsion system (Sl) will be noted (SI).
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Fig. 4. Optimal Ejection Velocity

It is demonstrated in Appendix 1 that the optimal ejection velocity W* is
furnished by the equation:

& é
U@ ) /.
/éa—mﬁi (@ +pc)dé =[o——”—7/—2(/pv/+2pc dt=0. (43)

Condition (43) is interpreted simply (Figure 5):

Only the part of the efficiency !p+V|/m above the commutation level -pc/m

intervenes, which is logical. For the optimal ejection velocity W*, the area
(1) representing to some extent the global excess of the efficiency above the
commutation level is equal to area (2) below the commutation level.

Examples of the determination of the optimal ejection velocity W* will be
given in 8II, 1.3.1.3. and 1I,2.3.2.3.

1,2.3.4. Kinematic interpretation of the vector of efficiency. /24

We have seen the fundamental role Played by the vector of efficiency Bv

in the determination of the optimal thrust law, no matter what system of pro-
pulsion is envisaged.

We propose finding a kinematic interpretation o£ this vector. For it let
us find the locus of the extremity P of the vector MP = Py in the fixed axes
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(S O

where the moverment of tve mobile 15 located (Figure 6). Let us posit OP = 3.
It becomes:

.o e (X

g=r T (44)

now, according to equations (18) and (19) of the adjoint system:

By =—pr = py- [V"?r/f—r’ é}} (V= aax‘: , line operator) (45)
therefore:
e=7+7(7¢) +[\7.’§’T/F‘,’t)] (6-7) (46)

or, finally,

b= 77 (7. ¢) +o([77). @)

Fig. 5. Optimal Length of the Maximal Thrust Arcs.

Therefore at an order of ]p+v|approximately higher than the first, the

point P shifts as if it were subjected at every instance to the same weight
field and to the same thrust acceleration as the mobile M (the weight obvious-
ly being calculated for P and not for M).
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& ' Since the adjoint is defined only
by about 1 multiplicative factor, fixed

by the normalization condition, it is

always possible to fix this normaliza-

<bl

. . > >
tion is such a way that |p v! << |r]
and that the mentioned characteristic
is precisely verified.

©l

For convenience we formerly chose
the normalization conditioms:

K

Pmf (ou Pecr, OUPJF)=C,” ou C¢ ach):~/.

0 It is enough to take a modulus value /25

Fig. 6. Efficiency Vector. << 1.

Therefore the optimal acceleration law can theoretically be defined in the
following manner (Figure 7):

2 (T 1)

Fig. 7. Directrix Curve.

a pilot mobile P furnished with a propulsor is launched at the initial instant

+ - -
into the relative position P, in relationship to Mo’ close to Mb, and with
o
the relatively low velocity Pv. =—Pr . The mobiles M and P are then sub-

jected to the same acceleration ¢'directed according to Mp [ and proportional
to MP for a propulsion system (Sz)]. While the mobile ¥ describes the

26



trajectory (T), the pilot mobile P describes the '"directrix curve' (D) and
furnishes the optimal thrust direction.

Instead of this elegantly theoretically solution there is an evident
preference for the more traditional solution where the optimal acceleration
law is remembered in the guide-pilot system of the mobile M, since at any rate

. s - - > .
the data nf the initial conmditimme P, ard P, (six parameters) presumes that
o o

these quantities have been previously calculated as a function of the mission
to achieve, i.e. that the optimization problem has been resolved. Therefore
the pilot mobile has only a purely theoretical usefulness!

1,2.3.5. Case of gravitational field independent of time.
In the case of a gravitational field independent of time, since the second

members of the equations of movement (11) - (13) do not explicitly contain the
variable t, it is possible to write the Hamiltonian first integral (see §1,1.5):

— py/F™
Hpr - V+by-T (7 +£,‘,’7—/- ~Pm q*=Cte (48)

which for a singular solution becomes (7;ﬂ7/55 ZZ?”7)
max

. (49)
H*=pr-Vipr-g (7)==
On the other hand we have seen that it is then possible to define some

generalized "orbits'" and to consider some transfers without rendezvous. To
say the final position M. on the final "orbit" is not imposed comes down to
saying, in particular, that it is equivalent to obtaining at the instant tf

-> > — —_— — .
the elements r £ Vv £ Or the elements Fr + V7 J¢ and 1y +g, 6t Trelative
to a point close to the final "orbit'".

Since ;r and Bv are the coefficients of influence of the variations /26
f f
d;f and 6vf, compatible with the final rvestraints (final imposed trajectory),

on the index of performance S, this equivalence is tramslated by:
[E:'(th)'/‘[)—];'(adt}]f‘:o (50)
which is again to say:

(51)
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Now since the field E(;) is derived from the potential —U(;), its energy
is particularly attached to one "orbit':

(52)

Equation (51) shows that the energy of the generalized osculating "orbits"
at the instant te respectively to the trajectory of point P [directrix curve

(D)] and to that of ¥ [trajectory (7)] are equal. As a matter of fact:

: VDV = orad U- D7
— = - = . - . Yy =
Ep-Ey=DE=D| U) V-DV-gra (53

V(5= 7) = rad U - (F=F)=V-Bs -5 7

is really zero at instant t_., because of (51).

f,
1,2.4. Case of the Central Field

The hypothesis of the central field greatly simplifies the problem of
optimal transfers by the fact that the natural movement is integrable. In
order to benefit as much as possible from this integration, the elements of
the Xeplerian orbit osculating to the trajectory are taken as components of
state. Obviously this is a matter of choosing the elements most appropriate
to the problem; in particular this choice should not be modified in the case
of weak eccentricities. The variable of position must be particularly well
chosen, for it must be substituted for time, as a variable of description, in
order to facilitate the integrations. The optimal thrust law is easily inter-
preted: the thrust is directed towards a pilot mobile which describes a
keplerian orbit,the elements of which are perturbated.

1,2.4.1. Osculating orbital elements.
Since the field of gravitation 3 is central, with a centerp /g’: -H ?’—;—),

the elements ;, v (Figure 1) at each instant t define the Keplerian orbit (0)
"osculating' (in the sense of celestial mechanics) to the transfer trajectory
(T) of the mobile M, i.e. the orbit which ¥ would continue to describe if the
thrust were suppressed beginning at this instart.

A transfer (with rendezvous) is therefore the passage of the mobile ¥,
between the fixed instant t, and tes from a very determined position ¥; on the
initial orbit (00) to a well-defined position M. on the final orbit (Of) with

f
the correct velocity ?f (Figure 8). In a transfer without rendezvous, the
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position M. on (Of) is not imposed. The problem of interception [position
rendezvous with a target mobile Mc describing the orbit (Of) without the

correct velocity being imposed] will not be studied.

. The state X at the instant t /27
of the mobile ¥ can therefore be
defined not only by the data of

the elements ?, V and mass m, but
also by the data of the osculating
orbit (0) (five parameters), of
the position of ¥ on this orbit
(one parameter), and of the mass
m (or a performance index as a
monotonous function of the mass m)
(one parameter).

Fig. 8. Transfer. Central Field

plane of X
reterence

Fig. 9. Notations.

The osculating orbit (0) can be defined (Figure 9) by the datum:
1. of the unitary vector 7= K/h, perpendicular to the plane of (0), or better

of the projection Z of Z on the plane of reference Oxy, having as

plane
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components:

E = s/ini smf
> .. (two parameters) (54)
Zplane | p =-sini cos
2. of its semi-major axis a (one parameter)
3. of the "perigee vector’: /28
— 7 IZAZ; ol (Laplace's first (55)
e"?]’ T integral, see Appendix 2)

directed toward the perigee and of length e (eccentricity), or rather of

. > > .
the projection e eof e on the reference plane Oxy, having as components:

plan

E;/ene{ g (two parameters) (56)

Note: The preceding choice is preferable to that which would consist of
defining the osculating orbit (0) by the datum of R (kinetic moment: three

> . > >
parameters) and e (perigee vector: three parameters), connected by h « e = 0
(one equation), because the semi-major axis a, connected to the period T by
the equations

2r
7

=, n= = average movement, (57)

plays a basic role in the rendezvous, while the magnitude h of the kinetic
moment, connected to the "parameter p = a (1—e2) of the orbit by h2 = pup is
of less interest.

On the other hand the position of the mobile M on the osculating orbit (0)
can be defined by the datum of its straight (geocentric) ascent or of its
ecliptic (heliocentric) longitude:

L=(53§,07n'). (58)

It is preferable to take L as a parameter instead of © (argument), v (true
anomaly), u (eccentric anomaly), = i-e sinw (average anomaly) or even,
instead of the longitudes (in the sense of celestial mechanics):

f£2+ 8 or 0 +w+M
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because L varies monotonously as time (at least if i does not become equal to
90°, which will never be the case for close transfers) while it cannot be
exact for the other quantities.

In particular, at the time of the impulsional thrust application, the
position of the mobile M (therefore of its longitude L) does not vary, while
the other quantities may have any variation in sign.

The use of the orbital elements is generally practical for treating trans-
fer problems.

As a matter of fact, while the elements ?, v vary in large proportions
along the entire length of the transfer trajectory (7), even on ballistic arcs,
the five first orbital elements are constant on the ballistic arc and generally
vary more continuously on the propulsed arcs, especially if it is a question of
a transfer between close orbits.

On the other hand final conditions are generally expressed more simply,
for in the majority of cases they directly concern the orbital elements rather

than the elements ¥, v [fixed semi-major axis (or energy), orientation of the
plane of the fixed orbit, etc. ...]. In particular the condition of non-
rendezvous, that is to say the final position MF on the indifferent final

orbit (0.), is shown very simply (indifferent final straight ascent Lf).

Finally the choice of orbital elements associated with the linearization
hypothesis leads to a constant adjoint for transfers between close orbits.

1,2.4.2. Variation of orbital elements.

The variation of the orbital elements is given by the perturbation
formulae:

— _l -
Z}'il'angh [rA X)p/ane (59)
é:i—az(ﬁf)ﬂme (60) /29

2:5;/3,, =/% [?/\/77*!7/1 [F’/\ Y)]P,&ne (See Appendix 2) (61)

€

and the equation

b cosi .
r? //—5/'02 { sin? 8)

(62)
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> > . > .
In the equations r, V, i, h, 6 are supposed to be expressed as a function

of Z s @, P and L.
plan plan

1,2.4.3. Variations of the elements of the directrix orbit.

When the thrust acceleration ? is zero, the pilot mobile P, subjected
uniquely to the central Newtonian field g(}) =—purF/r3 , deseribes a
. . , . - .
Keplerian directrix orbit (D). When the thrust acceleration y is not zero,

the pilot mobile is subjected equally to the acceleration ¢ and it is possible
to define at every instant the Keplerian directrix orbit (OP) osculating to

to the trajectory (D) of P, just as it has been possible to define the
Keplerian orbit (0) osculating to the trajectory (I) of M. We propose to

calculate the five first elements of this osculating orbit and their variations

. ->
as a function of y.

If D designates the difference between one element of (0 ) and the corre-
sponding element of (0):

Dl =hp-h = 1)/7’A7)=07~*AV+ FADV = (63)

By AV + FARS = By AV +BrAF

— — 7——»—oZ—l —v-Z——-——-.- :—:: (64
De:ep‘e—D/ﬁ—VAh—r)ﬁ#D—V/\h+[u VADA 0(,,) )
3 ApS +-—VA DR 7——+%/r p
/e — s FOr . =173
DE=EF—£=D(—‘2/‘--%):V'DV+# 3 =~V'p,. ol %4 3 . (65)

If the optimal thrust acceleration 37‘::5’*;ﬂ3/775;7 is applied, the

variations of these differences are given by:

40k _ Ddh—D/rAx) DFAT*=pyAY*=0 (66)

dE
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dﬂé’: _OE:L _’*A_* A=A :__7_ YRADNL A [ A
908 - p & #.o[x h+V/1/r/1)/)] ﬂ[zr/wh p,/l//’ﬂb’)] (67)

GDE OE i) e e APV (68
—_—) —= LYY= . =yrT L ) /30
T o(V-¥)= 577 ot

It is verified that if ? = 0, Bﬁ, De and DE are constant. But further-
mcre, we see that Bh is constant, even when the thrust acceleration is applied,
which furnishes a first integral for the optimization problem:

Dh = pyAV + prAF = constant vector when

optimal ?* is applied
in a central freld.

(69)

This first integral is pointed out, among other places, in [27]. Here it is
connected to the notion of osculating directrix orbit.

The interpretation of Dh is easy:

> = . . .
suppose that at any instant t, we give the elements r, V a joint rotation gﬁ.
If this rotation is compatible with the final restraints, the variation in the
performance index S is then:

,b':-o~'~;+,5;’-d—?l7=,5;-/ﬁ/l7/+p7/c?i2%7)=
SE-[FAp+ VAR )= -G -0F
-Dh then appears as the coefficient of influence E; , on the performance
index S, of a joint rotation £y compatible with the fimnal restraints. In
particular, if the final kinematic state ?+, ?; is defined approximately at a
joint rotation 66 around axis K, E; . 3% must be zero for every rotation

& = ké0 around this axis, and therefore 5; -k =o0. Likewise, if the final

. . >
kinematic state is defined approximately for one joint rotatioen, Pp = 0.

Finally,equation (68)shows that on a singular arc where ];:l = cte
— - o
DE=-V-p, i Cte = —-H (70)

which is nothing but the Hamiltonian first integral (49).

On a singular arc the energy of the osculating directrix orbit (OP) and
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the energy of the osculating orbit (0) differ by one constant.

These few generalities concerning optimal transfers emphasize the complex-
ity of the problem. Even in the case of central gravitational field, the inte-
gration of the equations of movement in the attached equations (one times the
expréssion of the optimal thrust carried in these equations) with the conditions
at the borders of the two extremities is analytically impossible in general.

It is necessary to have retourse to some numerical integrations [34, 35].

However the analytical study has been able to be pursued in particular
cases: singular case [31-33], transfers of indifferent duration [4, 7-19] and
finally transfers between close orbits.

We are going to begin this last case now.

1,3. TRANSFERS BETWEEN CLOSE ORBITS

The hypothesis of short differences from the osculating orbit to the trans-;3}
fer course, referring to a reference nominal orbit, permits the problem to be

linearized.

The major simplification furnished by this hypothesis is to render the
variation of the adjoint negligible.

The resolution of the optimization problem is then made in three steps:

1. The adjoint being given a priori, (with a certain number of aero compon-
ents, corresponding to the orbital elements of which the final values are
indifferent) the optimal thrust is deduced from it.

2. This optimal thrust is carried into the linearized equations of movement
which are integrated. From these are deduced the variations of the
orbital elements and consumption as a function of the adjoint.

3. The adjoint is determined a posteriori beginning with variations in the
elements imposed by the transfer (imversion) and the consumption is
deduced from it, as is the law of optimal thrust.

1,3.1. Linearization of the Problem.

OQur goal is to describe the linearized equations of movement (variation
of the orbit elements, consumption),

1. With a description variable angular to position u instead of time t
(which becomes a state component) in order to permit an easier ulterior
integration,

2. So that the second members of these equations do not contain the state,
which assures a constant adjoint,
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3. So as to be able to treat the problems of distant rendezvous on close
orbits and not only problems of close rendezvous , as is the case in the
majority of studies [53, 54].

For this, the sixth element t is replaced by a parameter 1 of which the
variation At 1is easily interpreted.

1,3.1.1. Nominal orbit.

Therefore in what follows we shall suppose that, during the transfer, the
osculatinoe nrhit [N) is nnt Ffar awgw From g nomiral orhit (") (maxi—u~ senara-
tion (80) = (0) - (0) of the order of e << 1).

Since the nominal orbit has to play a priveleged role, in order to simpli-
£y the calculations, we shall choose the following units:

unit of length: a = semi-major axis of (0), (D
unit of time: —%;— = [period on the orbit (0)]/2m. (2)

Then the unit of velocity is the circular velocity Vcirc(aj at the dis-
tance a = 1 from the center of attraction and the unit of acceleration, the

acceleration of gravitation g(a) at the distance a = 1 from the center of
attraction.

We shall also choose (Figure 1):
i=0 (3)
and if e#0,
Qrwo=8=N (4)

(straight ascent of the
perigee) = 0.

1,3.1.2. Change of description
variable,

In order to carry out the
integrations, it is suitable to
change the description variable:
instead of the time t, we shall

take the parameter u defined by:

plane of refere

& 4, L :
/s 97 (5)

i

Fig. 1. Nominal Orbit.
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U is the eccentric anomaly on the nominal orbit corresponding to the straight

ascent of the real mobile. U like L varies monotonously with the time t.
This description variable is more convenient than the variables below:

1. Eccentric anomaly u on the osculating orbit (0):

this anomaly fixes very well the real position of the mobile, but runs the
risk of not varying monotonously with the time t, because it is sensitive
to the movement of the perigee.

2. Eccentric anomaly of a fictitious mobile which describes the nominal orbit
of a Keplerian movement as a function of time t:

this anomaly can replace the variable t, but integration is facilitated
only if it also carried into the second member of the equations of move-
ment. This is possible only if error in position remains small (this
anomaly must remain close to u). Therefore it is impossible to treat some

distant rendezvous problems.

Let us note that the nominal mobile ¥ of straight ascent L describes the /33

nominal orbit (0) of a Keplerian movement as a function of the nominal time t
such as:

Frdl=3bdM=3bRdE=7Fb Jdid. (6)

The description variable u now fixes the straight ascent L of the real
mobile M on the osculating orbit (0).

In the case of a rendezvous, it is also indispensable to know the time t
which becomes a state variable. It equivalent to knowing t or:

ot (l)=¢(L)-t (L) 7
with the following conventions (fixing the origins of the time t and t)

E(L,)=¢t,=0 (8)

J[’/LJ:&/L;}—E/L;):O [fixed E/L;):tf' therefore E/Lo)]_ (9
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Therefore if the final orbit (Of) is taken as the nominal orbit*, &t (L)

is nothing but the temporal lag (on the final orbit) of the nominal mobile M

of the same straight ascent L as the real mobile ¥, in relation to the target
mobile ME (Figure 2).

These three mobiles M, M and M, coincide at the final instant t..

With the new variable introduced, the equations 6f movement are written:

Fig. 2. Geometric Interpretation of §2.

— d‘ZD/ane__ b ,.2(7__5{,72[ "".’729} (?A X)P/a"'e

(10)

Zp/ane: Ju r . /760.;(; A

*This hypothesis, which permits an easy interpretation of ét_ and At, is
however not at all obligatory. Often it is even preferable to choose a
nominal orbit intermediate between the initial and final orbits, in order to
increase the exactitude of the calculations. This transposition is immediate.

37



o da b r2//—5/n2Z5/n2 6) 252 vy
T da F heosi (11)
= dé,; b r3f7-sin?i sin?6) [—» - — —
€ jape= — L2010 2 AR+ VA(F,
plane= —= = P Y A\h+ (r/l X} ptare (12)
so0e de) b r2(r-sin*isin?6) F
T da | F hcos i Y (13)
e dc b r2(1-sin?i sin?8) y (3 )
Tda 7 h cos L ! (14)
dJ b r(7-sin?i sin?é) y?
Tm e = = — Y 15
VrgGTF heos i 7 (%) (13)

These are the equations which must be linearized.

1,3.1.3 Infinitesimal transfer.

Let us be a little more precise about the notion of infinitesimal trans-
fer.

In order to be able to linearize equations of movement, it is not enough
to suppose that the initial orbit (OO) and final orbit (Of) are close. As we

have done, §1,3.1.1, it is, also necessary to suppose that, during the transfer,
the distance between the osculating orbit (0) and these two orbits remains
small [or rather that (00), (Of) and (0) are close to the nominal orbit (0)].

Since catching up éto is done by varying, during the transfer, the period

of the osculating orbit, therefore by varying da of its semi-major axis of
which the maximal amplitude is of the order of [6t0|/At, it is necessary to

suppose that: Gto

e = max (|ag], |an], |sal, [aal, |28], e (16)
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The final term |6t0|/At entering into the definition of e is essential,

as the following example shows: to catch up to a target mobile which is on
the same orbit as the pursuer, but with a temporal lead Gto, the maximal seper-

ation |6a| during the rendezvous is of the order of [GtO[/At, while the total

variation A of the first five elements (and particularly Aa) is zero.

The characteristic velocity of the transfer:

&
AC= Ydt (17)

&
is of the order of e.

For the propulsion systems (Sl), it is also necessary to suppose that the

mass m of the mobile varies little (relative variation [Am|/m of the order of
€); the nominal mass m is then taken as unity. This condition implies that
the ejection velocity W is large enough for the nominal orbital velocity:

For propulsion systems (82), this hypothesis is not necessary because only

the thrust acceleration y intervenes in the equations. However we shall do it
sometimes simply to connect the variation of mass Am to the variation in the
performance index AJ:

Ad=FA

728 x

/77 m}N max /é-”e?/ = max/Am/S/ m=7 (19)

1,3.1.4 Linearization.

If, in the second members of the equations of movement (10) - (15), the
osculating orbit (0) is replaced by the nominal orbit (0) and the mass m by the
nominal mass m = 1, the relative error committed in the solution of the problem
is of the order of e.

If € is small enough, this error is permissible in so far as the varia-
tions of the elements of orbit (since these variations are at most of the

order of ¢, the absolute error is of the order of 82) are concerned. On‘the
other hand it is unacceptable in rendezvous problems in determining the time
t (or what comes to the same thing, the lag 6t(L). As matter of fact, equation
(13) would furnish a constant lag. In equation (13) the osculating elements
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should be carried with a relative precision €2.

Designating the separation with straight ascent L between the real state

and the nominal state by:

51':: xX-x

(20)

the linearized equations of movement are written (omitting except where neces-

sary for comprehension a writing of the nominal sign ( ) in the second members):

=% ==, R va
z =67 '_L_(r/}a//p/zne

plane’ plane-~ \/7_-—6—2;
8'=8a'= z?/*27757’
e’, =ge :r[?AF+—I7A/F’/Z?)]

plane’ .plane plane

5&E42r63-~éC~FiE+Fj-J?

2 7-e2 |2
C'=8C'=ry (51)
N o
-
witht =1- e cos u, h=v1 - &2,

Noting that:

rda= /7—e cosu) da = a—,% [/u—es/nc/} &a} —(c/—e:inu)

and
. 2r S o, s d (7 = = JE5&
7-e? (‘"‘“28‘/‘/) e —~d~—/02.6e)—ﬁ, e

40

(2D

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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where

- 2 K 2 e’ . esinlul =
R=-—=_ '~ - ~= ~&Esncu
/_ez//2e+r)ra’u_ 7—o? [(7 2)smu ; ]x

(29)
3e ecos2u|— r_ <. r:
+\[7-e? | = —cosu + — === = Y+ v
e | 3 P e e
is a periodic vector in u of period 2w, equation (24) can be replaced by:
. — ] 30
T'= 3 M35 ¢ &. e (30)
2
where
3 —_—
T=-0b+= Mda + R.0e
2 (31)
is a new parameter which can replace the time t or even the lag &t in a
rendezVvous problem.
As a matter of fact, with the conventions adopted above:
= = 32
T, =6¢,=0 (32)
because éaf = 0 and ggf = 0, since we have chosen to make the nominal orbit
coincide with the final orbit and
3 ®,.5e.
r°=—5t0+—2—Mo<Sao+ 0- %€,
(33)

Ar:rf—r°:6t0+—23—MoAa +5;.ZT§.

Fixing At comes down to fixing Gto (if Aa and %é are fixed, which is the

case in a rendezvous). From now on we shall therefore use:

At = (initial temporal lag on the final orbit of the nominal mobile

M of the same longitude L, as the real mobile M, referred to the (34)
. 3 e >
targgF moblled@ép?>+ §i¥9éa + Eb f‘Ae .

The utilization of the parameter 1 instead of time t is of interest
because the physical interpretation of At is simple, and especially, the second
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member of the equation in 1’/ no longer contains the staté Separation K;L
which simplifies the optimization problem (constant adjoint).

Let us call % the kinematic condition:

—_—

z

plan
X=|2. (35)
€plan
T
and gf the distance between the kinematic state and the nominal kinematic
state. Equations (21) - (23) and (30) can be written in the following vec-
torial form:
OX =rkvY (36)

s . . . -> .
where K is the tensor of influence of the thrust acceleration y on the kine-
matic state, a tensor which depends only on the position u (and obviously on

e).

If ? has the following components:
¥ 49y (37)

in the mobile axes MXYZ and if 2 and g
plane plane

components in the fixed axes Oxyz, the rectangular matrix (6 x 3) representa-

are defined by their /38

tive ~»f the tensor K is:

0 0 Ksz
0 0 /(,77Z
/Cax /<9Y’ 0
K= —— (38)
/(a'X /((XY 0
Kﬁx KﬂY ) O
/(rX' A{ZV’ 0 |
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The elements of this matrix are given in Appendix 3.

It can be noticed that the elements of the first five lines of the matrix
rk are polynomials in sin u and cos u and that u only occurs in the elements

of the sixth line (term in u sin u and thx and term in u in rKTy ).

Definition. We shall call near-circular transfers, the transfers between
orbits with eccentricity e of the same order as the magnitude e of the
transfer or smaller (e < order e). It is then possible to choose a circular

nominal orbit (e = 0), since that only introduces into the solution a relative
error of the order e < order e.

We shall call transfers between ellipses of weak eccentricity transfers
between orbits of which the eccentricity e is small in comparison to unity, but
large in comparison to the magnitude e of the transfer (e << e << 1). Then

the nominal orbit will be an ellipse of weak eccentricity (e << e << 1).

1,3.1.5. Transfers and Rendezvous

* The previous choice of variables permits the treatment, not only of rendez-
vous problems where Au and At are fixed, but also of transfer problems (without
rendezvous), for which the transfer angle AL is fixed (fixed Au) and the

duration At is indifferent (whence: At is indifferent).

On the other hand it is impossible to treat directly the problems of trans-
fer (without rendezvous) for which the duration At is fized and the angle of
transfer AL indefinite (whence: Au is indefinite). As a matter of fact it is

not equivalent to fix At or to fix At because f'(Lf) = tf being given, 5t =
— T

= -t(LO) depends on the length of the Keplerian arc Mb Mf on (Of) therefore of

Lf.

known (within about one plane rotation, because only 8a and $e intervene in T).

This cannot be the case in certain transfers.

At any rate the preceding reasoning presumed that the final orbit was

The study of the transfers (without rendezvous) of fized duration At,
which we are leaving to the side, could at any rate be carried on by consider-
ing the solution as the optimal case of rendezvous when, with fixed At, we
sweep away the values of the parameter Au and of the elements of the orbit
which are not imposed.

There is reason to think that the relative solution for such a problem,
where the final optimal position U e corresponds to the value tie (fixed),

differs little (generally) from the solution of the problem of the same trans-
fer to final fixed position U e In particular, the value tor of the final

optimal time obtained in this last case should be little different from tyg

Still, in the case of a large number of revolutions, it is possible that the
two solutions may present significant differences.
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1,3.2. Determination of the Optimal Thrust as a Function of the Adjoint.

The Maximum Principle is applied directly to the linearized problem in
order to treat the particular case of transfers between close orbits independ-
ently of the more general results already obtained in Chapter I,2.  However
the direct comnection is made in Appendix 4, by using the notion of canonical
change of variables [25, 30].

The law of optimal thrust is easily interpreted thanks to the notions of
"directrix orbit" (0,) and especially of the "efficiency curve” (P).

For propulsion systems (Sl) some general results are obtained concerning /39

the maximum number of maximal thrust arce per revolution and the simgular cases
(of the linearized problem).

1,3.2.1. Direct application of the Maximum Principle
to the linearized problem.

If:
P= (B, Pa B e|=[ e Py Pa P Pp. ] (59)

designates the "kinematic adjoint" (associated with the kinematic distance %f),
where 5: and 3: are two vectors in the plane Oxy (therefore with Zwo compon-

ents), the Hamiltonian is written:

= ﬁi;éi5ﬁ+~;§’<§a'f-ﬁiz.5i;-+

P73 (52)
(40)
Pc‘sc'(s’) X Pe X(Sf)
=r # 2
psr(e) TP e £
where: - - o
Pv = E/F=2pa,7+FA,527+ AV+ h)Ar
(41)
=2p, V+h AP /pe/\l/-/— )Ar + pr[3MV-2F)
and o h ] ‘
SM (42)
/D pﬂ 2 PZ‘
Pe, =P+ Apr (43)
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. . . -
H is maximum in reference to y for:

e )"‘ 2 (44)
( /Pv/
and:
(gf), Y= Spax L//@) (U = measure of unity, 0 = ]B:] * P = (45
commutation function)
(Sz) Y =/,5;’/ (i.e. finally y = B:) (46)

With a relative error e, the vector ;: defined in (41) is nothing but the
"vector of efficiency” found in Chapter I,2., i.e. the adjoint vector attached

to velocity V. This point is also evident if we carry out the canonical change /40

of variables
(%, «)

( /anea tE’p/«sme'r u)

(See Appendix 4).

. . . L L
Since the Hamiltonian H does not contain any separation &, the adjoint p
is constant.

1,3.2.2. Directrix orbit.

As we have already pointed out in the case of any field of gravita-
. . o= o . . .

tion, the extremity P of the vector MP = P, describes, in the fixed axes Oxyz
and in the first order in IE:I , a directrix curve (D) obtained by subjecting
the pilot mobile P to the same field of gravitation and to the same thrust
acceleration as the mobile M.

If, in place of the real mobile M, the nominal mobile M (corresponding
to the same straight ascent L) is used, a relative error of the order e only

. . > .
is committed for p, as we have just seen.

Now, the nominal mobile M describes the nominal orbit (0) of a Keplerian
movement (? = 0) as a funetion of time t. Therefore the nominal pilot mobile
P also describes a Keplerian orbit [nominal directrix orbit (5%)] of a Kepler-

ian movement (? = 0) as a function of time t (Figure 3).
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The datum of the kinematic adjoint B
(constant) is equivalent to the datum of
the nominal directrix orbit (5?) (five

lements: Z ° d of th
elements: planePi_aP » €p1anep 24 © e

initial position PO of the nominal pilot

mobile on this orbit (one element), as the
following equations, demonstrated in
Appendix 5, illustrate:

Fig. 3. Directrix Orbit. # orderjﬂ;z (47)
[=,b_z’/1?—pt Z +order py2 for e=0)
E—é:é}-?:v;f_é A€+ /—62,5:/\?1- order p,? (48)
[:ﬁ:A?+order pr? for e=0)
(49)

Da=38p —c?=;)27 (F ﬂ+?°5§)=— 2pr * order p, 2

(with h = /1 - e?2).

It is important to note that P, does not intervene in these formulae.

Therefore in the case where variation of the semi-major axis is the only varia-
tion imposed, i.e. where 12 is the only component of the adjoint not necessarily
zero, the nominal directrix orbit coincides with the nominal orbit (tangential
thrust).

On the other hand Da contains only the component p_ of /41
the adjoint. As a matter of fact, if there is no rendezvous (pT = 0), we have

demonstrated in § I1,2.3.5., in the case of any gravitational field (but inde-
pendently of time), that the energies of the "orbits' osculating at the final
instant to the trajectories of the mobiles M and P were equal. Here the
energies, and therefore the semi-major axes and the periods of the nominal
directrix orbit and of the nominal orbit,are equal. The vector of efficiency
E:'E MP is therefore a periodic vector in u of period 27 if there is no

rendezvous (or more generally if p.= 0).
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On the other hand if b, 4 0 (which can only occur in the case of rendez-
vous), the periods of P and of ¥ are different and the points ¥ and P are
. . . >>

separated more and more during the successive revolutions, and the vector p, =

= MP rests more and more on the velocity V of M.

1,3.2.3. Efficiency curve.

The locus (OP) of P in the fixed axes Oxyz is simple (conical of focus 0)

which permits us to follow easily the evolution of the direction (in absolute
space) of the optimal acceleration and even the evolution of its magnitude in
the case of propulsion systems (82).

However it is also convenient to consider the locus (P) of P in the
system of axes of mobiles MXYZ of origin M in order to follow the evolution of
the direction of the optimal acceleration in axes connected this time to the
mobile (which can be interesting from a practical point of view) and to deter-
mine the maximal thrust arcs and the ballistic arcs in the case of propulsion
systems (Sl) (Figure 4).

Let us here recall that for a propulsion system (82) the optimal accelera- /42

tion 1in ¥ is the vector ? = P = E: (if pj = -1).

For a propulsion system (Sl), acceleration has MP = §:> as a direction and
as a modulus Ymax if |§:l > 1, i.e. if P is outside of the sphere (I) with
center M and radius 1, and 0 if ]5:1 <1, i.e. if P is inside the sphere

(what has just been said presumes P, = -1).

The commutation points Up, Uy oo (separating the maximal thrust arcs

from the ballistic arcs) are therefore the intersection points of the "effici-
ency curve' (P) and of the sphere (I).

then P, = 0 (and in particular when there is no rendezvous), the compon-

> - . = > > R . .
ents p_ = p, and P, =p, are fixed in D, and as r and V are periodic in

1 1
u, with a period of 2w, B:- is periodic with the same period. The efficiency
curve (P) is therefore a closed curve and the same acceleration law should be
applied during successive revolutions. Figure 4a illustrates this case for a
propulsion system (Sl).

On the other hand when P, + 0 (which can occur only in the case of rendez-

>
vous), the components P and p, vary as a function of u, because of the
1 1

terms M and ﬁ, and B: contains a secular term (the presence of M and P, ).
1

The efficiency curve (P) is no longer a closed curve. The acceleration law
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should be modified during successive revolutions. Figure 4b illustrates this
case for a propulsion system (Sl).

¥4

Propulsed arc

X\
LN

allistic arc

( Systém Sq)

(System  S;)

Fig. 4. Efficiency Curve.

a - Simple transfer, b - Rendezvous.

For Au >> 2w, it is not lpT[ but Aulprl which is comparable to the other

components of the adjoint and thus:

. —_ (50
py (2pa +3upr) VrhApe + /pe /H/+F;’Z)
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1,3.2.4. Efficiency curve in the case of a circular nominal orbit (without
rendezvous)

In the case where the nominal orbit (0) is circular (e = 0) (which is the
case for transfers between near-circles), the vector of efficiency p, is

written (if there are no rendezvous, or better, if P, = 0):

,0_7-:2,0;71&?/1,5;7’-/,5:/171‘/3}')/1? (51)

Then positing (Figure 5):

Pe=pPuX +Pg Y =pPe (&*casle+75/"[-e) (52)
pz=ps X +p,Y = pz /7505Lz *75"”12) (53)

the components of E:; in the mobile axes are:
X =pxsinl ~ Py cosl =p, s/n/l. —Le)
Pr { Y=2p,+2p, cosl +2pp sinl =2p, +2p, cos(l_—Le) (54)
Z=pgsinl —p,cosl=p, s/ﬂ/l_ -—[_z) .

The efficiency curve (P) is /43
an ellipse (Figure 6), a section

}’A of the elliptical cylinder (o) of

generatrices parallel to M and
of equation:

(o) | 46X+ (y=2p2) ~ 4pe? = 0 (55)

nT T P
; and of the plane (w) of equation:/44

(T[) l2pz cos/ée—l.z) X+ pz sin
(56)

(Le=Lz)(Y=2ps)~2peZ =0.

Fig. 5. Notations.
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Fig. 6. Efficiency Curve for e = 0.

The plane (w) passes through point w(X = 0, Y = 2Pa’ Z = 0), the center of

the elliptic base (P) of cylinder (o) in the plane Z
of eccentric anomaly L - L,-

0, described by point P
This result extends to the three-dimensional case Lawden's result [21]
concerning plane transfers.

1,3.2.5. Propulsion systems (S]) - Number of thrust arcs - Impulsional
solutions.

Let us take the case where P, = 0, i.e. where the efficiency curve (P) is
a closed curve.
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Fig. 7. Number of Maximal Thrust Arcs Fig. 8. Number of Impulses (Case
(Case of a Complete Number of Turns). of a Complete Number of Turns).
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If the transfer duration corresponds to a complete number N of turns
(AL = 2Nm), according to the initial position ¥ of M on the orbit [or the

0
initial position of P0 of P on the efficiency curve (P) (Figure 7)], the number

n of maximal thrust arcs is equal to:
Ny
n=
”/77 + 7

where n; is the number of arcs of (P) outside the sphere (I).

This result extends to the impulsional case [(P) tangent to (L) in n1

points] (Figure 8a and 8b). But we shall see that in this case the application
of an impulse <in each of the n points envisaged above is not always obliga-
tory if Fmax = », (In the case of Figure 7b in particular, it is possible to

reduce the impulses in PO and P, to a single impulse in Po or Pf).

f
If now: 2Nm < AL < 2 (N+ 1) 7 and if the solution is not impulsional,

we get: Nn,j <n <N+ 1) n, o+ 1. If the solution is impulsional, it is

necessary to make a distinction between transfers in less than one turn

(0 < AL < 21) where (P) can present arcs outside of (I) (for example Figure 9)
and transfers in more than one turn where (P) cannot present an arc éxterior
to (%) and where: an <n < (N+ 1)n1.

The determination of n, is therefore basic. 2n1 is the number of roots

in u of the equation:
pyi—7= PRKTPT-7=0 (57)

t .
( )~ = transposition.

The elements of the square symmetric matrix (6 x 6):

BHBwo 0 o o
B

ve|Bop| 0| 0| 9
0| 0 |Bsa|Bsu|Bis|Bsr (58)

B= rkk7 =

0 0
0 0
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I

are given in Appendix 6. The elements of the minor relative to element B_.
{(which are the only ones which interest us here, for P, = 0) are polynomials
in sin u and cos u. More exactly the diagonal elements and the element Bau

are polynomials P(cos u) in cos u of degree 1 or 3. The other elements are
of the form sin u Q(cos u), where Q(cos u) is a polynomial in cos u of
degree 0 or 2,

7 In the general case

(Pg, Pns Pys Po and Pg not zero),
equation (57) is therefore written:

A

7-ecosu =PBP = f(cosu)+
(59)

+ sinu @, /cosu).

Or else:

P_;’ f:os a} =sinu @y /cos u) (60)

X

and by raising it to the square:

Fig. 9. Number of Impulses (Incomplete
Number of Turns).
/Ds(cos a):s/nzu 2 {cos u)zag(cos u)

or finally:

Ps'[cos u) =0. (61)

This equation admits a maximum of six roots in cos u. For each of these
roots sin u is well determined by equation (60). This return to equation
(60) eliminates the parasitic roots introduced by squaring.

Therefore there are at the maximum six commutation points, i.e. three arcs

of (P) outside of (£). Therefore: n; S Myax < 3 where Bnax 1S the maximum
value of n; for all of the transfers (i.e. when e, Pgs Pos Pys Py and Pg have
any values at all). We cannot write Nnax = 3, for nothing proves a priori

that the roots of (61) are real and that the inequalities -1 < cosu < + 1,
-1 < sinu <+ 1 are verified.

However we shall show in § II,5.3. that there do exist, at least for



certain particular transfers between elliptical orbits of weak eccentricity

(e << e << 1}, solutions to n, = 3 impulses per revolution. Therefore for all

transfers between elliptical orbits (¢ << e < 1), we can affirm that n = 3,
Imax
therefore that n, < 3.

On the other hand. for transfers between near-circles (e < order e << 1)
where the nominal orbit is circular (e = 0), we have seen in the previous
paragraph that the efficiency curve is an ellipse which can have only two arcs
out5ide of sphere (f). Therefore there cannot be more than two thrust arcs per
revolution and as solutions for two thrust arcs (or two impulses) are fre-
quently found, we conclude from this that ny < 2 in this case.

/47

Up to the present moment we have been reasoning in the most general case
of transfer. The same reasoning applies to more particular classes of trans-

fers.
Particular Transfers

The degrees of the polynomials P and Q in (59) depend on the choice of
the parameters Pes Pus Pas Py and Pg which have a nmon-zero value. The varia-

tions of the corresponding orbital elements are imposed. The other variations
are indifferent or, exceptionally , imposed. As a matter of fact a component
of the adjoint can be zero while the variation of the corresponding element is
imposed. For this it is enough for this imposed variation to coincide exactly
with the induced variation which would be obtained in the problem where this
variation would be considered indifferent.

Taking into consideration the exceptional character of this possibility,
we shall associate with a choice of the parameters pg, pn, P.> P, anc Pg
which have a non-zero value, the class of transfers for which the variations
of the corresponding orbital elements are imposed. Thus in general there are
25 - 1 = 31 distinct classes of transfers.

In Appendix 7, the degrees of the polynomials P and Q, as well as an upper
boundary for the maximum admissible number n, of maximal thrust arcs per revolu-

tion are given as a function of the class of transfers considered.

This upper limit is equal to three for most classes of transfers, except
for the optimal variation of the semi-major axis Aa where it is equal to one
and for the optimal rotation of the plane of the orbit (Af, An) where it is
equal to two (although the degree of P is equal to 3 and that of Q to 2, for
P and Q contain r = 1 ~e cos u # 0 as a factor).

When Q = 0, equation (59) is an equation only in cos u. The commutation
points and the maximal thrust arcs are symmetrical in relation to the major
axis.

In the case of transfers between near-circular orbits (e < order e << 1),
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where the nominal orbit is circular (e = 0), we shall see in Chapter I,4. that
the number of classes of transfers to be envisaged goes from 31 to 19 (see
Appendix 7).

According to the class of transfers considered, E;z can be a function of
sin2 L and cos2 L (that is to say finally of sin L alone or cos L alone)
which leads to a symmetry of the maximal thrust arcs in relatin to 0x and to
6;, therefore in reference to zero or indeed as a function of sin L alone
(symmetry in relation to 3;) or a function of cos L alone (symmetry in rela-
tion to 6;), or finally of sin L and cos L (no symmetry in relation to the

axes Ox and 6;).

If we exclude the singular cases (of the linearized problem) studied in
the following paragraph, the admissible maximum number of maximal thrust arcs
per revolution is equal to 2 except for the optimal variation of the semi-major
axis where it is equal to 1 (see § I1,1.2.).

[,3.2.6. Propulsion systems (S]) - Singular cases (of the linearized problem)

In certain transfers (without rendezvous), it can happen that the effi-
ciency curve (P) is entirely situated on the sphere (I) (Figure 10).

The Maximum Principle does not
permit, at least in the linearized
study, a determination in the singu-
lar case of the modulus F of the
thrust between the values 0 and

F , nor the position of the thrust
max

arcs. Therefore it is necessary to
have recourse to a direct study and
the solution is not generally

unique but degenerates into a large
number of solutions. This ''degener-
acy" is generally removed by a higher
order study (see Chapter II,4. and

§ II1,5.3.). Therefore it is quite-
necessary to distinguish these
singular cases of the linearized
problem from the singular case
pointed out in § I,2.3. leading to
"intermediate thrust arcs'.

X

Fig. 10, Singular Case.

In order for such a singular case to be presented, it is both necessary /48
and sufficient for the polynomial Pé {cos u) given in (61) to be identically

zero, which leads to the conditions:
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(a) = e(%————b po,+p/_§)=

(b)=-pé+ /+2e 122C” pi +3b°pd +(2e —3)p,8—0

/c)_-—: e-ep; - /2" l,o7 r4e pZ +85 P, pa- 3eb,od—e/2 e/ppr
(d)£—7+,o§+z;§ PE +4P3 +62p§(+/4—3e2)pﬁ2=0 62)

/F)Ee(PZp7 —b,oapﬁ)=0

(9)=- (7282)

Ps Py +b(3-¢%) pucpa =

//7)5—2—,0;/07 +4bpaps —bepyps=0
(with b = V1 - €2)

These equations can only be verified simultaneously if e = 0 and:

&g
a=?a/£a=i7),Pe=Pz=0 (63) I bis
7 Y3 L
Ps=0, pe=75 ,Pz="5", Lz={L:m (64) 111

Therefore there is no singular solution (of the linearized problem) for /49

e # 0.

In the circular case e = 0, there are two types of singular solutions:

The type I bis corresponds to an efficiency curve (P) reduced to a point
w situated at one of the intersection points (y = €, = * 1) of the sphere (I)
and of the axis MY (Figure 11). Therefore the optimal thrust is tangential.
This case will be studied in detail in § I1I,1.3.2.2., 11,3.3.2.5. and
11,5.2.1.3.

In type ITI, the efficiency curve (P) coincides with one of the large
circles (C+)(Lz - Le =0) or (C_)(LZ - Le = m) of () situated in the planes
(n+) or (v ) tangent to the orbit and forming angles equal to * 30° with the
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local horizontal plane X = 0 (Figure 12).

The optimal thrust is
situated in one of these planes.
At points L = Lo and Lo+ the

thrust is tangential (X = Z = 0,
Y = #1).

This case will be studied
in detail in § 1I,5.2.1.3.

1,3.3. Determination of the /50

Variations in the Orbital
Elements as a Function of the
Adjoint (Integration).

Bringing the law of optimal
thrust which has just been
determined as function of the
adjoint (§ I,3.2.) into the
equations of movement (36) we
get in a matrix form:

Fig. 11, Type 1 bis.

sx'=rkr]=r re /pr—/__,/rKKTPT—/X gp7 (6%
whence, by integrating u, to Ugt
[AXI:_G’PT (66)

with:

Fig. 12, Type 111.
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G
¢

EEG;,, oo | o
pe|Gnp| 0

6= -—_-;(—Bda: o Gae ,G‘?f’: Giﬁi’ Ga; square symmetrical (67)
/ /Pv/ G“J qu Gaﬂ Gexr matrix (6 x 6)

Ges|GralGop| G

e e — 4

0 0
0 | 0 |6pa|Gpallpp|Gpr
0| o

The equation giving the consumption is written then:

174
AC:/Q s’m;xl/(@)ra’u (@=/5;/—7) (68)

a

or else:

/ Ur 7 Uy Uy
AJ_-?L rb?d“z/u rP/(/(TpT:lf PBPT du

o ZL(‘v

or

7 T
-1 pop

(69)

1,3.3.1. Systems (Sz).

Calculation of the matrix G is simple for the systems (Sz). As a matter /51
of fact in this case y = IE:] and it suffices to integrate matrix B of which
the elements are polynomials in sin u, cos u and u, which presents no difficulty
except the length of the calculationms.

The elements of G are given in Appendix 8.

1,3.3.2. Systems (Sl)

On the other hand, in the case of the systems (Sl), Y = Ypax U (0) and
|B:| continues to exist in the denominator of the integrand. Therefore it is

first necessary to determine the commutation points (roots of © = 0), and
then to calculate an integral in complex form.
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The integration can only be carried out in a certain number of particular
cases.

1,3.4. Search for the Adjoint Beginning With Variations in the Orbital
Elements (lnversion).

The resolution of the optimization problem implies finally the a posteriori
determination of the non-zero components, thus unknown ones, of the kinematic
adjoint (and of the non-imposed variations, thus unknown ones, of the orbital
elements) as a function of the imposed variations of 'the grbital elements.

This allows the law of optimal thrust (directrix curve, egﬁiciency curve) to
be set and, on the other hand, consumption to be calculated.

1,3.4.1. Systems (52).

In the case of systems (82), this determination is easy because the matriz

G does not contain the kinematic adjoint P.

System (66} is linear in respect to the unknowns (non-zero components of
the kinematic adjoint and non-imposed variations of the orbital elements).

Therefcre the problem of optimization is completely solvable in the general
case for propulsion systems (Sz) as Ross and Leitmann [36] have pointed out in

the case of transfer and as Edelbaum [37] has pointed out in the case of
rendezvous.

For example, if all the variations of the orbital elements are imposed,
the kinematic adjoint P is obtained by inversion of the matrix equation (66):

P=ox7 677 (70)

Introducing this value into the consumption equation, we get

|AJ= P ox /Am/:%ABCTG"Ax (71)

The performance index AJ is therefore a quadratic form of the variations
of the orbital elements.

Presentation of the results can be envisaged in the following manner,
positing:

ge- - A%

V2 Py Jar]BE o)
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equation (71) becomes:

where <6‘>=_£ and A,t:u,—e:/'na,-—/u,—e.sinu‘,).
E

This equation is a hyperquadratic one in the six-dimensional space of the
"reduced variations" t.

The general discussion of the problem is reduced to the study of the de- /52
formations of this hyperquadratic when Au varies, for a value of the eccentri-
city e and a fixed initial position u,  (altogether three parameters for discus-
sion).

In the case of a whole number N of revolutions, the discussion only brings
in the parameter e in the case of transfers [see equation (I,4-3), but the
three parameters e, u, and Au in the case of rendezvous.

For a large number of revolutions [N > order éﬂ the discussion only brings

in the parameter e in both the case of transfers and in that of rendezvous
[if Atl/Au is taken as a sixth component; see equation (I,4-10)].

In the case where the nominal orbit is circu1a£+(e = 0), the discussion
now only brings in AL (see § 1I,3.3.1.) (take axis Ox following the axis of

TN
symmetry of the transfer arc MOMf).

If in addition there is a complete number N of revolutions, no discussion
is necessary in the case of transfers and there is a discussion as a function
of AL (or N) in the case of rendezvous.
. . . 1
Finally, in the case of a large number of revolutions [N > order Eﬂ, no
discussion is necessary (if Arl/AL is taken as a sixth component).

Let us note that, by using the reduced variations r, the discussion does
not bring in any parameter relating to the propulsion system.

When certain variations of the orbital elements are not imposed, it is
enough to be concerned with deformations when Au varies (for determined u and

e) of the projection of the hyperquadratic defined above on the hyperspace (or

space, plane, straight line) of the determined variations, parallel to the

hyperspace (or space, plane, straight line) of the indifferent variations.
1,3.4.2. Systems (Sl).

In the case of the systems (Sl), the determination envisaged at the
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beginning of § I,3.4. is delicate because the matrix G does not only depend

on e, u and ug but also on the kinematic adjoint P; in general it cannot be

carried out except by a calculation of successive approximations.

However, if this determination is possible, we get an analytical expres-
sion of the kinematic adjoint P in the form:

X
P=P e,uoluﬁzuo+Au1/\=meW—) (74)

which a posteriori determines the optimal thrust law (here AX only represents
the <mposed part of the variations of the elements). Introducing this value
into the consumption equation, we get:

ac W/Am
AC=F,,,,,AK = oAz / = A, e,uo,u,::uothu/)\) (75)

[For a complete number of revolutions Au = 2Nw in the elliptical case (e # 0)
or for any angle of transfer in the circular case (e = 0), At coincides with
Au; AC is nothing but the relationship Atprop/At of the total duration of the

maximal thrust arcs on the duration of the transfer].

Thus we obtain an explicit formula giving consumption as a function of the
transfer parameters: e, U,» Ugs AX (imposed) and the maximal thrust FmaX which

only occurs in the relationships A.

For this reason it is useful to introduce "specific variations':

v=24X _ _AX _ A _, e,uo,u,=u0+Au,)\) (76)
AC  Wiam] A
i.e. variations per unit of characteristic velocity. /53

It is likewise useful to consider the reduced variations r [introduced
previously in the case of systems (82)] in order to be able to compare perform-
ance of the two propulsion types.

Let us note that v and ¢ are connected by:

7= WA, (77)

and that ¢z = v for AC = 1, i.e. when the maximal thrust Fmax is applied in a

continuous fashion.
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NOTE:

The parameter v is of more interest than the parameter ¢ for impulsional
solutions, because then v - of a finite limit # 0, while z -+ 0.

The complete discussion of the problem brings not only the parameters e,

u, and Au [which intervened in the discussion for the system (Sz)], but also

ali of the imposed parameters A.

The same sort of simplifications as in the case of system (Sz) is intro-

duced by the hypotheses: whole number or large number of revolutions, eccentri-
city of the nominal orbit equal to 0, etc...

If analytical inversion is impossible, it is necessary to have recourse
to calculation by successive approximations, possibly facilitated by tracing
ahead of time a certain number of nomographic charts in the adjoint space
P. If the number of non-zero components of P is equal to 2, we trace the lines:

AX
AZ——“: = (78)
Fmaxdt A e) UozAuaP) Cte
and
AC
f\ 3_——-—-'—"/\ = b
=B Bt e (S o A P )= (79)

Thus knowing e, u., Au, AX imposed, Fmax’ we deduce from them the values

o’
of A, whence P (and optimal thrust) and AC (consumption) by interpolation. An

example of such a solution is given in § 1I,2.3.2.2.

1,3.5. Criterion for Comparing Performance of Propulsion System (S]) and (52).
In order to show the penalty brought about by not modulating the ejection

velocity, a propulsion system (S;) can be compared for the mission given to sys-

tem (S;) of the same installed power P  and with constant ejection velocity W.

In order not to multiply the number of systems (Sl) serving for comparision,

we shall only retain two types of them:

1. System (Slc): the ejection velocity W is such that the maximal thrust

Fmax is applied in a continuous fashion.

2. System (Sl*): ejection velocity W is equal to the optimal ejection velo-

city W* for the mission considered, given by the equation (I,2-43) which
is written in the linearized study:

62



[tfu(@)(/ﬁg/—z} o't:/uj‘(/(@)(/ﬁ;/—z)rduzo. (80)

These are the reduced variations g=—, . A:K_::—*—— which will serve /54
V2 B [Am] 4t
as a base of comparison between the systems (Sl) and (Sz), since their defini-
tion involves as a propulsion parameter only the power Pmax,which by hypothesis

is the same for all these systems,

2

Let us note that for the systems (Sl) of the same power Pm

/Z/=VAv =F[e,t,, 4=ty +du, B, w)

and since the transfer (e, Uy, Up = U + Au, AX) is given, the parameters ]cl

ax

are only functions of the ejection velocity and are simultaneously the maximums
for W = W*, which furnishes a means for calculating W* without using equation
(80) (see § 11,1.3.1.3. and 1I,2.3.2.3.).

In concluding this chapter let us emphasize the complexity of the problem
of transfer between close orbits in the case of a propulsion system (Sl) with

a constant ejection velocity compared to the case of a propulsion system (Sz)

with a modulable ejection velocity.

While in the last case the problem is solvable for a transfer with any
rendezvous whatsoever, the solution in the first case comes up against three
essential difficulties:

- determination of the commutation points (roots of the equation 0 = 0 of
degree < 6),

- complicated integration,
- difficult inversion.
Thus there can be no hope of resolving it except in a certain number of
particular cases {Second Part). Nevertheless a few general results concerning
uncoupling can be stated. They are the object of the following chapter.

I,4. GENERAL RESULTS. UNCOUPLING

We separate the study referring to propulsion systems (SZ) where uncoupling
is frequent from that referring to propulsion systems (Sl) where only 'non-

induction" can occur.
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1,4.1. Case of Propulsion Systems'(sz) (Modulable Ejection Velocity).

1,4.1.1. Uncoupling between the rotation of the plane of the orbit and
modifications in the plane of the orbit.

The shape (I,3-67) of the matrix G, which can be decomposed into two
square and symmetrical matrices 2 x 2 and 4 x 4,shows that when no modification

is imposed in the plane of the orbit (pa =P, = pB =p. = 0), no such modifica-

tion appears to be <nduced by the rotation Ag, An of the plane of the orbit.

Inversely, if the rotation of the plane of the orbit is not imposed
(pE =P, = 0), no induced rotation of this plane appears through modifications

Aa, Ao, AB, At in the plane of the orbit.

Since the matrix G does not depend on the adjoint P, there is also /55
uncoupling between the problem of the rotation of the plane of the orbit and
the problem of the modifications of the orbit in its plane: the values of the
components PE’ Pn’ Pa’ Pu, PB’ PT of P calculated from the variations
AE, An, ba, Ao, AB, At are nothing but the values Pg’ Pn on the one hand and
Pa, Pa, P8, Pt on the other which would be obtained from the variations Ag,
An on the one hand and Aa, Ao, AB, AT on the other, by successively resolving
the problem of the rotation of the plane and the problem of the modifications

of the orbit in its plane.

Equation (I,3 -41) shows that the optimal acceleration relative to the
total problem is the vectorial sum of the optimal accelerations relative to the
component problems. Likewise, equation (I,3 -69)shows that amounts of consump-
tion are added algebraically.

1,4.1.2. Case of a complete number of turns.

The elements of the matrix G given in Appendix 8 show that in the case

where Au = Ue -ug = 2N7t, the minor relative to the element GTT of G is
diagonal.
GFE o] o] o 0] o
o |Gy, 0| 0 0 0
g 0 0 655 0 0 Gar
0| 0| 0 [Gael 0 [Guy (»
0 0 0 0] 6/5/3 G/n
0| 0 16:4]6ral60n]Ger
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In the case of a transfer without rendezvous (pT = 0), if the variation

of one of the first five orbital elements &, n, a, o, B is imposed, there is
no variation induced in the four other elements. There is even uncoupling
between the variations of the first five elements in the sense that we have
given this word in the previous paragraph.

As P, = 0, equation (I,3 - 69) shows that only the minor relative to the
elements GTT of G intervenes in calculating the consumption AJ. Since this

minor is diagonal, AJ is a linear and homogeneous function of the squares of
the variations AE, An, Aa, Ao, AB.

2 2 2 2 2
AJ=L AE+A7+A<?+ADK+A/A -
GEE 5,7,7 Gsa Go(af 6@/3

(2)
7 2 2//—9) 32 2h0x* z4p
> |24 + +
2hu ¥ 1+4e? 47" 5(/—e) 5-4e?

The hyperquadratic envisaged in § I,3.4.1.has as an equation (in the space of
five reduced variations g)

5 2 2 2 2
2o 201eY) e Bt 258 | 248
¥ 7r24e? 7 4 5[7-e2) S-4e?

(3)

In the case P, # 0 (which can only be produced in the case of rendezvous) /56

equation (I,3 - 69) shows that AJ does not have such a simple shape because G
is not diagonal.

However it is demonstrated in Appendix 9 that if
AT, = AT -AT, . (4)

is chosen as the sixth variation, and no longer At, referring to rendezvous,
the new matrix G1 is diagonal.
In (4), A
(4), bt

transfer corresponding to the rendezvous under consideration, induced by the
variations of a, o and B.

represents the variation of t in the optimal simple

ATl is the necessary supplement to assure rendezvous.

If the new variation in the kinematic state is:
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I

Az
A
P (%)
A%, = A
Ap
AT,
then: ,
_7 -1
AJ_?(AX,) G;T AX, )
where G1 is, this time, a diagonal matrix. Whence:
g At}
AJ = AJé.s. tAJ, = 4 ¢ # 2G,c, (7

where AJt s is given in (2) and where:

. G G;, G
ITT TT Gaa G o i A ~ = Au’ (8)

Therefore, for a large number of turns:

2

247, (9)

A g

The hyperquadratic envisaged in § I1,3.4.1. has as an equation (in the
space of the six reduced variations z):

2 2

2(7-e%) 2 75 225 25 | 4%}

257 + —= : * + =7
S 7+4er 7 4 5(1-e?) 5-4e? 34u%

(10

Again we find the fact that it not Arl but rather Arl/Au which is to be
compared with the variations of the first five elements. As Aty <, when

the rendezvous only costs a negligible supplement.

N >> l,
€
1,4.1.3. Case of any transfer angle.

It would evidently be desirable to extend the preceding results concerning
uncoupling to cases where the mobile does not carry out a whole number of turns
(nor a large number of turns).

Let us remark immediately that complete uncoupling between the rotation
of the plane of the orbit and the modifications in the plane of the orbit
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permits a choice of axes where Z% and E; are adjusted independently of those

plane

> > .
r ad .
where Aeplaneand Pe are justed

If, in order to adjust 2z, eand B;, we no longer take the axes 6?, 3? as

lan
previously but the axes 6;1, Y1 (from the plane 3;, 6;) which cut across the -/57

symmetrical matrix 2 x 2 in a diagonal manner:

. Gge Ggy
r = (11)
Cpg Gy

the variations Ag. and An, are uncoupled.
1 1 P

Likewise, in choosing the axes 6;2, 6;2 (of the plane 0x, Oy) which cut

across the symmetrical matrix 2 x 2 in a diagonal manner, in order to adjust

Xé dp.:
eplanean Pe*
Gora.‘,caf/_%
G, = G p (12)
s Cpp
we uncouple the variations Aaz and ABZ. This last choice does not have a
great deal of interest for e # 0, because Aa and Ao, on the one hand and Aa

and ABZ on the other remain coupled and moreover, Aaz and A82 can no longer
be simply reconnected, as Ao and AB/e were previously, to the eccentricity
variation Ae and to the rotation of the orbit in its plane.
.—)+
In the case where the nominal orbit is circular (e = 0), the axes Oxl and
612 coincide with the axis of symmetry of the transfer arc ﬁoMf which is then

- - - x>
evidently of interest to be taken as reference axis Ox.
I,4.2. Case of Propulsion Systems (s;) (Constant Ejection Velocity)

I,4.2.1. Mutual non-induction between the rotation of the plane of the
orbit and modification of the plane of the orbit.

The shape of the matrix G (which can be broken down into two square
symmetrical matrices 2 x 2 and 4 x 4) resembles that which refers to systems
(Sz). When no modification is imposed in the plane of the orbit

=Pg =P, = 0), there does not appear any such induced modification
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by the rotation Af, An of the plane of the orbit. Inversely, if the rotation
of the plane of the orbit is not. imposed (Pg =P, = 0) no rotation of this

plane appears induced by the modifications Aa, Aa, AB, At in the plane of the
orbit.

However, contrary to the result obtained for the system (Sz), there is

no uncoupling between the rotation of the plane of the orbit and the modifica-
tions in the plane of the orbit. As a matter of fact the matrix G depends on
the adjoint P which is not the same, depending on whether the problem of the
rotation, the problem of the modifications in the plane or the problem of total
transfer is considered. These solutions are not additive.

I,4.2.2. Case of a Whole Number of Turns.

The property of non-induction depends on the zero elements of the matrix
G. In addition to the zero elements occurring in (I,3 - 67) and explaining the
results obtained in the previous paragraph, other elements can nullify them-
selves under particular conditions.

For example, let us consider the case of a whole number N of turns

(Au = 2Nn) for transfers such that e # 0. If ]53]15 a function of cos u alone

(in Appendix 7 this case corresponds to Q = 0), the elements of the minor of
G referring to element GTT corresponding to the elements of B of the shape
sin u Q (cos u) are zero. As a matter of fact such an element is written:

U = U, +2NTT wu, 2N T
vi/pv/-7
Pv

LY, U,

Under these conditions the minor of GTT is written:

Geel 0| 0| 0] 0
o |Gy, 0 0 0
minor of GTT = 0 0 1G,51Go0| © (14)
0 Gaa Gaa’ 0
0 o ol o (;/3/3

It is important to notice that the element Gaa (= Gaa) is not zero and
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that (for e # 0) there is no mutual induction between the variations Aa and Aa.

For each of the thirty-one classes of transfer (without rendezvous)
corresponding to a total of imposed variations of the first five orbital ele-
ments (the possible induced variations of the other elements being considered
indifferent), Appendix 7 indicates which transfer classes definitely present
no induced variations and what the possible induced variations concerning other
classes of transfer are.

For the following eleven classes of transfers, there is no other variation
than those which are imposed. It is not certain that these are the only ones,
but it appears probable:

AE (rotation around the "parameter"»é}),
An (rotation around the major axis 0Ox),
AR (rotation of the orbit in its plane),
Ag, An (rotation of the plane of the orbit),
At AR (rotation around an axis contained in the plane Oyz),
An, AB (rotation around an axis contained in the plane Oxz),
Aa, Aa (plane coaxial transfers),
Ag, Aa, Ao (co-parameter transfers),
An, Aa, Ao (coaxial transfers),
Aa, Ao, AR (plane transfers),

and obviously:
AE, An, Aa, Ao, AB (general transfer).

In the case of transfers between near-circular orbits (e < order e << 1),
where the nominal orbit is circular (e = 0), non-induction is more commomn.

There are only 19 cases of transfer to consider instead of 31, because the
choice of the axis of reference is free.

For example, the transfer class where only Af is imposed corresponds, to
pxcept for one rotation, to the transfer class where An is only imposed.

On the other hand, a transfer class where AfZ and An are imposed simultan-
eously is obviously not reduced to one of the above classes. Taking

> . >>

Ox according to AZ s

plane

likewise imposed, a condition which does not figure in the above.

it corresponds to AZ imposed and An = 0, therefore

In Appendix 7, classes of double utilization have been mentioned.

1. If IB:I is uniquely a function of sin2 L or cos2 L, i.e. finally a function

of sin L or cos L alone, the elements of the minor of G referring to ele-
ments GTT corresponding to elements of B of the shape sin L Q (cos L) or

cos L R (sin L) (where Q and R are polynomials) are zero. Then the minor is
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diagonal:

Geg| 0| © 0 0
Lo |G,,] 0] 0 0
minor of G__ = Lo | o |G, O 0 (15)
0 0 |Gag| ©
E 0 0 0 0 Qﬁﬁ

The variations imposed do not induce any other variation.

2. If ]53] is a function of sin L alone, the elements of the minor of G
referring to element GTT corresponding to elements of B of the shape cos L R

(sin L) are zero,

Then the minor is written:

Ggg| 0| 0
o [6,,] 0| o
minor of G__ = 0 0 |Gae] © Ga/s (16)
: 0 (Gaul ©
0| 0 |6pa| 9 |4sp

3. If f;:, is a function of cos L alone, the elements of the minor of G
referring to element GTT corresponding to elements of B of the shape sin L Q

(cos L) are zero. Then the minor is written:

Ggoooo

!

Gppl 0| 0] 0

Gao |Goer| 0 |
6&’3 Gaaf o

0| 0 'f’__j Gpp

(17)

minor of G =
TT

Q OO | o |¥w
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4. Finally if ]E;I is a function of sin L and cos L, G has the form (I,3 - 67). /60

The properties of non-induction figuring in Appendix 7 are easily deduced
from these.

Out of the 19 transfer classes to be considered, there are at least 14 for_
which the variations imposed do not induce any other variation.

This is particularly true for all the classes where the variation of a
single element or even variations of two elements are imposed.

This last result is evident for.the classes envisaged, except perhaps for
the class where Aa and AB are imposed simultaneously or the class where AZ, An
. . el
and Aa are imposed at the same time. As a matter of fact IpV] is then a

function of sin L and cos L and, for example for the first class mentioned
above, it is not a priori evident that there is no induced variation Aa. In
fact, having found that in the transfers where only Aa is imposed there is no
variation Aa and AR induced by this variation, there is, equivalence, except
for, one rotation, between the problem where Ac alone is imposed and the

problem where Ac and AB = 0 are imposed (although these two problems do not

form part of the same class). Since for the first there is no induced variation
Aa, there is likewise none for the second.

The same reasoning holds for the second class (Ag, An, Aa) mentioned.
1,4.2.3. Case of any transfer angle between near-circles.

In the case e = 0, the choice of the axis of reference 6x is arbitrary.
It is practical to take Bz'according to the axis of symmetry of the transfer
arc‘ﬂgﬁ}. If then the problem to be treated is, with this choice of axis, such
that [5:| can be considered as a function of cos L alone, the elements of the
minor of G relating to element G . corresponding to elements of B of the form

sin L Q (cos L)(Q = polynomial) are zero. Then the minor has the shape (17).

This property is particularly true when the rotation An around Ox (or At
around 3;) is imposed alone. Then there is no rotation induced around 6; or

3;), nor obviously any induced variation of the other elements (see
§ 11,2.3.1.2.).
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Il - PARTICULAR PROBLEMS

The difficulties met in the First Part of the study, at the time of the /61
attempt to find an analytical solution of the general problem of optimal
transfers between close orbits for propulsion systems with a constant ejection
velocity, clearly show that the complete solution has no chance of being found
except for particular classes of transfers.

The perticular problems considered in this Second Part of the study rvefer
to transfer classes which offer an evident practical interest.

Their complexity keeps increasing, because the number of orbital elements
with imposed variation increases and goes from one element (optimal infinitesi-
mal variation of the semi-major axis; Chapter II, 1.) to two elements (optimal
infinitesimal rotations of the plane of the orbit; Chapter II,2.), then to
three elements (optimal transfers between close, coplanar, cireular orbits;
Chapter I1,3.), to five elements (reduced to four by the hypothesis e = 0 1in
the optimal impulsional transfers between close, near~circular orbits, whether
coplanar or not; Chapter II,5.), and finally to six elements (reduced to five
by the hypothesis e = 0, in long term rendezvous associated with transfers
which have just been mentioned; Chapter II,6.).

On the other hand, more and move significant simplifying hypotheses are
made, of the type already mentioned in Chapter I,4.:

1. whole number of revolutions,
2. large mumber of revolutions (N > order %J,
3. elliptical orbits of low eccentricity (e << e << 1),
4. near-circular orbits (e < order e << 1),
5. impulsional or quasi-impulsional solutions.
In addition certain of these hypotheses can be cwmilative.

Very fortunately hypotheses 2, 3, 4 and 5 correspond to cases which are
found very often in practice (hypothesis 2 essentially for satellites).

The 3-step format of each of the first three studies and of certain parts
of the two last ones is the same adopted in the general study of Chapter I,3.:
determination of the optimal thrust as a function of the adjoint; determination
of the variations of the orbital elements as a function of the adjoint (inte-
gration); search for the adjoint begimning with variations of the orbital
elements (inversion).
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In the first three studies the performance of propulsion systems (Sl) and
(Sz) are compared. In the first study (optimal variation of the semi-major

axig) even the most general propulsion system (S) is emisaged in view of the
relative simplicity of the problem.

Chapter II,4. shows separately how the optimal solution can be determined
by a higher order study when the linearized solution is singular.
IT,1. OPTIMAL INFINITESIMAL VARIATION OF THE SEMI-MAJOR AXIS
11,1.1. Introduction.
This is a matter of achieving the variation Aa of the semi-major axis of /62
the orbit, the variations of the other elements being considered as indifferent.

The only component of the kinematic adjoint P which is not necessarily zero is
P,- This problem is important in practice (variation of the period of the

orbit).
I1,1.2. Optimal Thrust.

Equation (1,3 - 41) shows that the efficiency vector

=y
PV=2paV (1)
is proportional to the velocity v.

The acceleration of optimal thrust y is therefore borne by the tangent to
the orbit ard directed forward if p, > 0, backward if p, < 0. It is anti-

symmetrical in relation to the major axis of the orbit.

The efficiency curve (P) is a cirele of the plane MXY (Figure la).

?V
@y K7
1
@ g
0 M X 0)
a b
Fig. 1. a) Efficiency Curve; b) Optimal Acceleration (system 82).
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X=2pa e sinl

./ﬂ-?’:p_v’ b (b= /7 e?). -

y= 253 (1+e cos L)

It is known, in fact, that the hodograph of an elliptical movement is a
circle when the turning axes are chosen as axes of reference (just as when the

fixed axes are chosen).

The directrix orbit coincides with the orbit itself (see § 1,3.2.2.).
For the propulsion system (Sz) optimal thrust acceleration ? is modulated
proportionally to the velocity v (Figure 1b).

In the case of propulsion system (Sl), maximal thrust Fmax is applied (if /63

AL = 2Nw) on an arc symmetrical in relation to the perigee (Figure 2b).

LY

Ballistic Arc

d

Fig. 2. a) Efficiency Curve; b) Optimal Thrust (Systems S]).

Finally, in the most complicated case of propulsion system (S), a zone,
for example, of maximal thrust Fma% to the perigee can be found surrounded by

two zones with modulated thrust, then by two zones with constant thrust FA and,

finally, a ballistic arc at the apogee (Figure 3b).
In the case of circular nominal orbit (e = 0), the efficiency circle (P)
is reduced to a point w (Figure 4).

/64
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Fig. 3. a) Efficiency Curve; b) Optimal Modulation of the Thrust

(System S).
14
(&) 0w
/4
-+ X o
M 0
) (&)

a b

Fig. 4. a) Efficiency Curve + point w; b) Optimal Thrust (System S]).

For a propulsion system (82),

thrust acceleration is constant, horizontal
> >
and equal to y = Mw.

For a propulsion system (Sl),

the maximal thrust is applied constantly if
w is outside the circle (X). If u

is on (Z)we again find the singular case
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of the type I bis pointed out in § I,3.2.6. (Figure 5). The thrust is horizon-
tal but seldom limited to 0 f-F'f-Fmax' The corresponding degeneracy will be
studied later.

*Y

(P < ax
M

3"

+71

e X
M
(

©
0
)

(z) ﬂ/

a b

Fig. 5. a) Efficiency Curve - Point w; b) Optimal Thrust (System S]).
Singular Case | bis.

Singular
wl

/ O0<F<

w” '
b
(‘) " @
R <F (constant) < K.,
0" ©
| fo b

Fig. 6. a) Efficiency Curve > Point w; b) Optimal Thrust (System S).

=M
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p— 3

Finally for a propulsion system (S), the thrust law depends on the posi-

tion of w in relation to the circles with center ¥ and radii 7 __,

2

(Figure 6). max

11,1.3. Optimal 'Dilatation' of the Orbit. Consumption.

I1,1.3.1. Elliptical case. Whole number of revolutions.

2
w

wa

In order to avoid discussing it as a function of Uy, we shall suppose that

the transfer takes place in a whole number of revolutions (AL = 2N7).

We know that then there is mo variation Aa and AB induced by the variation
Aa in the case of system (SZ)' For the system (Sl), there is a variation Ac

induced from the eccentricity, but there is no rotation (AR/e) induced from the

orbit in its plane (See Chapter I,4.).
11,1.3.1.1. System (52).

The reduced variation is given by equation (I1,4-3):

a
/1 Adm/AlL
11,1.3.1.2. System (S]).

The variation Aa is given by equation (I,3-66):

. 4 e
da=G,, py= 2F,,, ( Sign pag/ U(@)\/7—ezco.fzu du

“’o
or:
A= da  _ 2(sign_ ps) f.(e,g/l- f(z,g—u,)J/O\< u,«%
ZNTTFmax g E(e,%)ka(e,a,, %)5'/.221«[11\(‘”

l___ =\/<G35>=2 (indépendent of e).

(3)

(4

where E(k, ¢) is the elliptical integral of the second species of modulus K and

of argument ¢ and uy

p, = sign Aa.
Consumption is given by (I,3-68):

u
F _
ACZ/ fr:nax U(@)Pdu:ZNﬁnax(a1—25/.'7‘11)
ua

the commutation point. From this we easily deduce: sign
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whence

_ 4o Wldm| u, - e'sin u, -
< 2NmE_  2NTE,.. T

The variation Aa and consumption |Am| are therefore given in a parametric
form as a function of the magnitude of the maximal thrust arc (ul).

Figure 7 shows the evolution of

)
5 the snecific dilatation
|v| = |aa|/ac = |A]/xc and of |i|
as a function of u, for e = 1/Y2.
4
3+
2
TSie
I
i
1+ I
|
Il |
|
I
' l : J
! [ o
0 90° U,"z 140° 180 °o Y, degrees

Fig. 7. Comparative Performances of Propulsion Systems. (e = 1/V7).

The specific dilatation |v| is maximal for the impulsional solutions
(u1 = 0), which hold for |A| = 0, i.e. a maximal thrust acceleration (in

relationship to local gravity), which is very large compared to the relative
dilatation [Aa|/a of the semi-major axis to be achieved by revolution.

This maximal specific dilatation is equal to: /67
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/v/max=/’.m IvI=tim _2. .‘/1~62 ;o.rzu, =2 7+¢' (6)
1-e

up0 w0 1-e cos u,

Or, for e = 1/V2 , Ivlmax = 4.83. It corresponds to the application of thrust

to the point (perigee) of maximal efficiency.

Beyond the value:

_4F(e)

IM g == (7)

(where E(k) represents the complete elliptical integral of the second species
of modulus k) corresponding to u; =7, i.e. to continuous thrust, transfer

is no longer achievable: Fmax is not sufficient or N is not sufficient. The

corresponding value of |[v]| is:

W min =1 Ay = 2E(2) tere, for e=1/V2, /0], 00= I AL =1,72.

The fact of not being able to choose N and Fmax correctly in order to

achieve a determined dilatation can lead to a penalty in specific consumption
(therefore in consumption) as far as:

7 7

7 72,:5' 83 ~ 78 or 780 ..
/ .
4,83

I1,1.3.1.3. Comparison between systems (S]) and (Sz).
In figure 7 is shown the reduced dilatation

J5/~— _ JAal____ _[ay
V2 p /]AmlAu

max

in the case of system (Sl). Evidently it is always lower than that obtained

by the system (S,) (lz] = 2.

For the system (Sl) and in the case of e = 1/V2, ]c] increases from zero,

passes through a very flat maximum for u, = uy = 140°, which corresponds to the
optimal choice of the ejection velocity (W = W¥), then decreases slightly to
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uy = 180°. The optimal (S% ) system (W = W*) and the system (S ) corresponding

to the continuous application of thrust in this case have completely comparable
performances.

The non-modulation of the ejection velocity leads to a penalty in reduced
dilatation at least equal to:

$(5,) = 5(5) _2-17% _ 513

¥05,) 2 &)
or about 26% of the propulsive consumption. £ (e TT)
NOTE: For 0 < e < e;.  (root of the equation 2 = T-e yuy=1780°)
- T +e
and (S’l‘) = (Slc).
,1.3.1.4, System (S). /68

The optimal solution depends on the single parameter Py {or rather on

parameter WBpa) .

The commutation points are given by:

LR W T (4RI
e frbpr WE_ 1+(4bF WH/F?
1 7- P Wn:ax_? 1-(ps W5/ F?) (9)

C‘O.S‘LL =CcoS U’:__.

Cos U, =CO5 Uy= :__7_
4

2
Cos Us—cos ul= 1 T-ps Wy
¢ T+p} WB J
with f___/i <.
/—;nax

The dilatation of the semi-major axis is:
Uq o
A= Aa = 2(sign py) F/ V1- e? cos®u du+ Wg /Pa/[z““‘l sin a]
2NTTF m u, us (10)
3
/ V7-e?cos?u du }
(-4

n1ax

and the consumption:
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NI F

m3ax

b= 127l 7-7,' {f z[“' e sin U]:+ P’ W [u+ e sin u](:z»‘ [a- e sin a]j‘j 11)

The elliptical integrals occurring in (10) have already been calculated for
the system (51).

Figure 8 shows the evolution of the commutation points Uy, Uy, 1 and of

3
the "specific consumption" 1/|v| as a function of |A| for e = 1/VZ and f =
F
AL
T = 0.1,
max

From A to B, the thrust zone with F = FA extends around the perigee

(ul increases from zero).

At the perigee in B there appears a modulated thrust zone (FA <F<F )

which gradually stretches out (u2 increases from zero).
In C the ballistic zone disappears (u; = 180°).
In D the constant thrust zone F = FA disappears.

From D to E the thrust is modulated along the orbit as if for a propulsion
system (82). Let us note that then:

therefore DE is a straight line segment (whence the interest in considering
T%T and not |v]).

In E appears a maximal thrust zone Fmax which extends around the perigee

(u, increases from zero).

3

Finally, beyond F corresponding to continuous maximal thrust (u3 = 180°),
transfer is impossible.

In Figure 8 has also been shown the specific consumption referring to the
system (Sl) of the same installed power and of the same maximal thrust.

This specific consumption is evidently stronger than in the case of system
(S), since the command domain is reduced.

On the other hand, the specific consumption (T%T- = lk|/4) referring to
the system (Sz) of the same installed power is weaker than in the case of the
system (S) (or equal, on the segment DE) since the command domain is enlarged.
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1180°

0.8

0.6

_190°
0.4

d [ 1

o 0.5 1 .5 o’
IAl=1Aal/2NnF,,,
Fig. 8. Performance of System (S). (e=1/V2,f=F,/Fy,, =01

-
-

Let us note that since the specific consumption of an impulsional trans-
fer is independent of the magnitude of the thrust utilized,

Wy 1Aml, W, [4ml,
/Aal /Aal

and since the ejection velocity fitting the definition of Iv[ is always W

oaWslBmly_Ws  Wpl/dmls _Ws p5_ ¢ 96,
A W, 14,1 W ax

g max

B,

Figure 9 shows the evolution of the optimal thrust in the case |A]| = 1.19
for e = 1/¥Z and the propulsion systems (81), (Sz) and (S) (f = 0.1).
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o L1 2n m

3 u(d) 3
Fig. 9. Comparison of the Thrust Laws of the Propulsion Systems.

(=t im0t I\l = 1.19)

I1,1.3.2. Circular case (e = 0) -- Any angle of transfer. /71
We take the bisectrix of the transfer angle as the axis of reference
fr’ﬂa=-4L/2;zf=+Az/z).
11,1.3.2.1. System (52)'

The thrust is tangential and constant, and equal to

F_14]
—.?A.L (12)
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and the greater AL is, the weaker it is.
11,1.3.2.2. System (s]).

If F < iééi- transfer is impossible.

max 2AL
If Fmax = %%f— transfer consists of always thrusting tangentially with

maximal thrust.

If Pmax > %%%l- the solution degenerates (singular case of type I bis).

The thrust law referring to any degenerated solution whatever is obtained by
dividing the ficticious ™mass" |Aa|/2 on the transfer arc MOME with the "linear
density" F(L) [0 < F (L) 5-Fmax

backward if Aa < 0, and with modulus F(L).

]. Thrust is tangential, forward if Aa > O,

Of the possible distributions, this great degeneracy will permit those
which will assure the given variations of certain perameters of the orbit other
than a to be chosen (see § 11,3.3.2.5.).

11,1.4. Conclusion.

This first particular case, very simple, has been able to be studied in
rather unlimited hypotheses and even for the propulsion system (S).

The other cases where a single variation is imposed are more delicate but

will be able to be approached in the same manner.

11,2, OPTIMAL INFINITESIMAL ROTATION OF THE PLANE OF THE ORBIT

i1,2.1. Introduction.

N
Here it is a question of realizing optimal rotation Zj of the plane of

the orbit (0) around an axis contained in its plane, possible variations induced

from other elements being considered as indifferent (Figure 1).

The only components of the kinematic adjoint P not necessarily zero are
and .
Py Py
In Chapter I,4. we have already obtained the following results: /72

there is no variation induced from the other elements and for the propul-
gion system (SZ), there is uncoupling between the problem of the optimal rota-

tion of the plane of the orbit and the problem of the modifications of the orbit
in its plane, i.e. the optimal solution which we are going to find concerning
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the rotation of the plane alone will be able to be superposed on the optimal
solution concerning the modifications of the orbit in its plane, if these

modifications are likewise imposed.

Fig. 1. Infinitesimal Rotation of the Plane of the Orbit.

11,2.2., Optimal Thrust,

Equation (I,3 - 41) is written here:

P . PY-Bx o
Py=/:Z /M‘:hig,_ﬁ7 7 3

(4= \/7-“27) (1

and shows that the vector of efficiency SV {giving the optimal thrust direction

- > . . >
D) is wnormal to the plane of the orbit. It is zero when r is colinear with P,

>
For a normalization condition of the adjoint such that |PV| << 1, the

directrix orbit (OP) has as elements (equation 1,3, 47-49)
/73,::/7+.D/7=/7+F—;: AZ

ep=c+le=c+ 2 Ae (2)

89:8

The plane of this ellipse (OP) is deduced from the plane of ellipse (0)

by the infinitesimal rotation E;/h (Figure 2).

In this particular problem of the optimal rotation of the plane of the

orbit the locus of the extremity P of the vector 173

= E: in the absolute
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space Oxyz is still an ellipse, even if the mermalization condition of the
adjoint is no longer such that {E:I is << 1. This ellipse (£) is the inter-

section of the elliptical straight cylinder of generatrices parallel to 0z
based on (0) and of the plane:

_JYPy~XPy
h (Fig. 3) (3)

Z

11,2.2.1." Propulsion System (Sz).

The optimal thrust acceleration
>

Y = E: is alternatively oriented
upward (z > 0) in one half turn,
then downward (z < 0) in a half turn
(Figure 3). v is absolutely maximum
at the extremity most distant from
zero of the congugated diameter
M7M8 of MSMB in reference to (0)

and relatively maximum at the other
extremity.

11,2.2.2. Propulsion System (S]). /74

The commutation points Ml’ MZ’

Mg, Mﬁ are optained by cutting the

ellipse (£) by the planes
.H
z = %] (]pV] = 1). There-

fore there is a maximum
per revolution of one or
two maximal thrust arcs
(Figure 4).

i When there are two
X thrust arcs, the cords of
the thrust arcs are paral-
lel and equidistant from
zero. (OH' = OH'' in
Figure 5).

In the case of pro-
pulsion system (Sl) it is

convenient to define the
solution, no longer by the
parameters pg and P> but

Fig. 3. Optimal Acceleration (System (52).

86



by the parameters o and S indicated in Figure 5, introducing the principal
circle (C) of the orbit (0) and such that:

cos o =—Sp, /A
4)

Sin X = Spy

It is easy to see
that the study for
0< ax %— is sufficient./75
Then the commutation points
given as a function of o
and s by:

WS (U -x) = e cos < 5 (5)

whence
U, = ﬂ'
U,=o< + 8’
’ 0 (6)
U3=O< +ﬁ
U.4=0( —13”
with
B'=Arc cos (e cos « +.5) -

B"=Arc cos(ecos« -5)
(see Figure 6).

According to the
position of point S of the
polar coordinates o and s
in the plane (S), we get
(Figure 7):

zone (1): a maximal thrust
arc F per revolution.
max

zone (2): two maximal
thrust arcs per revolution
forming a "couple'".

Fig. 4. Optimal Thrust (System S]). The frontiers (T'')
1. One Maximal Thrust Arc. and (T'') are some of
2. Two Maximal Thrust Arcs. Pascal's great wheels:
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tocosfBl=e cos x+5=+7
(8)

cos B ecos X -5=-17"

The point 0 corresponds /77
to the continuous application
of thrust and the point

51(0(=—z—-7—1 5:7/

to the bi-impulsional solu-
tions (two impulses in con-
trary directions at the
peaks B and B' of the minor
axis) which will be studied
later in detail.

OH'___. OH” In the plane (S), the
.. te .
lires u = C are circles
® Upward Thrust passing through 0 and
& downward Thrust tangent to (I'') or (I''') of

polar equation:
Fig. 5. Definition of the Parameters o and s.

+s=D(u) co.r[c(-!/l/(a)] (9)

with
cos Wu)= CO;“'@

nWu) =SH ¢
sinw(u) >
D(LL): (71- 2 e cos u +22)"/2

which permits getting the position of the commutation points immediately when
o and s are known.

11,2.3. Optimal Rotation. Consumption.

11,2,3.1. Particular case of the optimal rotation of a near-circular orbit
(e < order € << 1) for any transfer angle AL.

2> - - _——

O0x is taken according to the axis of symmetry of the transfer arc MoMf'
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Fig. 6, Definition of the Parameters B' and B''. /76

e Given

Fig. 7. Nomographic Chart in Polar Coordinates o, s. (e = 0.2).
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11,2.3.1.1. Propulsion System (52)'

In § 1,4.1.3. we saw that there is uncoupling between the rotation -4n

around 6§ and the rotation AZ around 6;. The study of the rotation -An alone
(Figure 8), then the rotation AZ alone (Figure 9), is enough to solve the

problem.
The reduced rotation in both cases is, respectively:

5 1= 40| =\/< &> (10)

T V2B . 10mlAL

and
/?’/:: /Zl}/ =/< Gf? >
’ V2e, . 14mildl V<G> (11)
where
CGpy> = 1 (7+;Ln_ﬂ_L>
Al 2 Al az
<1-g/£_A_L> (13)
AL

Fig. 8. Rotation Around the Axis of Fig. 9. Rotation Around the Perpendi- /78
Symmetry of the Transfer Arc (e = O, cular to the Axis of Symmetry of the
System 52). Transfer Arc (e = 0, System (52)

The reduced rotations];nl and |;£| are equal to 1/v2 for AL = 2 Nm
(Figure 12) and tend toward this value after a few oscillations when AL » = in
conformity with the results obtained in § I,4.1.2.
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But it can be noted that these
quantities also assume the value

1/¥2 for AL = (2k + 1) 7, because
the thrust arcs

Mo M; 0 Mp

MFE My T

)

and

(Figure 8) or
/I/t&oxﬂgo /-ﬂg

and
Mo AT,
Fig. 10. Rotation Around the Axis of
Symmetry ofthe Transfer Arc (e = 0, (Figure 9) have equivalent effects.

System S]). N
The rotation |Ag| around Oy
is much more expensive than rota-

tion |An| around 0x for weak AL.
11,2.3.1.2. Propulsion System
(s,)
In § 1,4.2.3. we saw that when
. >
the rotation -4n around Ox (or Ag

e U . .
around Qy) is alone imposed, it does
not induce any rotation AZ around

> >

Oy (or -An around Oy). But there
is no uncoupling between these two
rotations: the successive study

Fig. 11. Rotation Around the Perpendi- of both of these rotations is not
cular to the Axis of Symmetry of the enough to resolve the problem by
Transfer Arc (e = 0, System S]). adding the solutions. However, we /79

shall limit ourselves to these two
simple cases in order to compare the results obtained with those referring to
the propulsion system (82).

ROTATION - An ALONE IMPOSED (Figure 10).
In this case py = 0.
The rotation is given by:

Ap (sign. ID’)/*-‘%L F
N (AL, L, )= = yJ cos/]dl =
7( 2) E__AL AL oy /,:” / / (14

max ax
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r _ ) (14) cont.
2sinl + 4Nsinl, for 2Nm <AL < 2L,+ 2N

(‘Zzﬂ_’%_)JQ_y/hLZ-ﬁ 4Nsinl, sor ZLz*ZNn\<AL‘<2(”—LZ)+2/VIT

45inl,-2sinl + $Nsinl, gor 2(m-L,)+2Nm < AL ¢ 2(/v+1) T

~

with 0¢L =4l _Nmgm
2
N is the number of complete turns.
The consumption is given by: /80
__Ac  _WlAm] 1 [+5 F dl -
/‘C(AZ,Lz) '"f/_-nax Al f;‘naxﬁé Al/ /L/:;vax - , (15)

Tz
2L +4NL, for 2Nm < Al « 2L, +2Nm

517 2L, »4NL, for 2L,+2Nm <« AL <2 (1-L,)+2NrT

20 +4L,-2m+ 4NL, for 2(m-L,)+ 2N < AL < 2(N+1)m

Whence the reduced rotation :
Ayl
15, I= Jiv, <Ml fs ae,)
VA 9 (16)
9 q;“

If Pmax is fixed, maximizing l;nl in reference to L2 (for fixed AL and An)
comes down to seeking the optimal (constant) ejection velocity W* [utilization
of propulsion system (Si)].

We shall not carry out this calculation and shall limit ourselves to
envisaging the case of continuous thrust (L = w/2) [utilization of propulsion
system (S1 )].

Then: Xc = 1 and

131, = A, =L

A4l

{2_5//7[ + 4N s 2N AL ((2/\/7«7)77
(17)

4-2sinl+ 4N si 2N+ < AL 2 (N+7) 1

The evolution of this parameter is traced on Figure 12 in order to show
the penalty due to the non-modulation of ejection velocity W. After a few

-92
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]

oscillations ]; | tends toward 2/m (instead of 1/¥2 for a modulated ejection

velocity), a

value which .t still has anyway for AL

= kn. The penalty is neg-

ligible for AL << 7, but redches

or about 20%

&1 /V2Pmexl A mlac
= o

w2
2in

Reduced Rotation 1cl

Fig.

12.

1 _2
51T~ 0,10
51 _L
V2
of mass consumption |am|, for AL = {k:.

—— Systéem (32).' W variable ; P=Pmax
-=- System (Syp) W=constant ,F < Fpyy (continuous thru

0 180 T 360 540
Transfer angle AL (degrees)

Comparable Performance of Propulsion Systems (e = 0).

ROTATION AZ ALONE IMPOSED (Figure 11).

In this case P, = 0.

We shall only indicate the results:

fAL
Ap(al, 1) = A% 97 ps) [T F i) -
F AL AL _& Enax
2

st)

(18)
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4Ncos, for ANm <AL« 2L, +2Nn

Ef/_Z”L_ﬁL) 2co5L,-2cosl + 4Ncosl, for 2L,+2Nm <AL < 2(m-L,)+ 2N

4(/\/4-1)(‘0_;[,, for 2(77-[,)+2/V77\<2(/V+7)77'

A (AL Ly)=_AC - WIAml. 1 T F 4l
Fox AL E AL AL)e E
( (19) /81
2N (m-2L,) for 2Nm <AL « 2L, + 2N

1 4 ;
AT \ 20 —2L,#2N(Im-2L,) for 20,+2Nn < AL« 2(17-1,) + 2N

2(N+1)(m-2L,) for 2(m-L,)+2Nm <AL < 2(N+1) 1

\
Whence the reduced rotation:

/3';/=VAEVF:ML/:/YF(AL'Z’)[ (20)

3

and, in the case of continuous thrust (L1 = 0),

/Tf/cz//\fleiL(Z‘2COfZ+ 4”) (21)

Figure 12 shows that the rotation |Af| is evidently much more expensive

than the rotation |An| for AL << 7. On the other hand, for AL = {zﬂ, the two

rotations have equal costs (|z] = %J.

The penalty due to non-modulation of ejection velocity W is not negligible
for AL << m,

As a matter of fact:

/53] =1(7_5/'/7AL) T AL
e 2 AL N0 23

_ 1 (2. 2cos 4L AL
/?}/(Slc)_AL< cos > )m

whence the penalty:
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A
Als] _ 2/3 4 _ 4
151 7

2V3

or nearly 27% of the mass consumption.

0,134

NI

On the other hand, for AL = {zn, again we find a penalty of 10% on |g],

therefore about 20% on |Am].

11,2.3.2. Particular case of a whole number of revolutions (AL = 2Nw).

11,2.3.2.1. Propulsion System (Sz).

The problem was resolved in § I,4.1.2. There is uncoupling between the

. . > .
rotation -An around 0x and rotation A¢ around Oy. The study of the rotation
-An alone, then of rotation AZ alone,is enough to resolve the problem.

The corresponding reduced rotations are [see equation (I,4 - 3)]:

[5 )= MAnl - [cG 5= [l+4e’ (22)
7 \2A,., [Amiba Vel 2(1-¢%)

- IhEL =1
/?}/-— V2P Jamine =/ < GR> "\“/_2—7 (independent of e)  (23)

max

The evolution of these parameters as a function of e is given in Figure
13. Note that the greater the eccentricity the less expensive is rotation
around the major axis in connection with rotation around the ''parameter'.

11,2.3.2.2. Propulsion system (S]).

Although there is no mutual non-induction between the rotations -An around

8x and AE around 6;, there is no uncoupling (addition of solutions), with the
result that the study of the general case (any angle §) is necessary.

Integration of the equations of movement on N turns leads to:

=_4n __ 1 7 fcosu-e (7-ecosu)du =
/\7 2N F, 2rrh,[ /‘,',,ax( ) ) (24)

max

1 [_ Se(B'+ B¢ 2(1+e%) cos o (5in B+ 5in B”)
2mmh
" € cos 2 (sin2B’+sin 2/3“)]

(1757 K
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/\fh_éim_= / iF J‘//?LL(7 ecofu)a’u
ZNTT/;-NBX 27T max
(25) /83

[2 S/ X [Jm B+ sin ,8”) Sin 2 (5//7 2B'+sin2 ﬂ”)]

A= BC  _ W/Ami _ [2(/3-!-” B 2 e cos o (sin B~ J‘/ﬂﬁ”)] (26)
2NnfF ..~ 2NTF,,,

max

where B' and B8'' are given in (7) as a function of a and s.

A Therefore An, AE and AC depend

only on the two parameters o and s,
that is to say on the polar coordi-
nates of point S in the plane (S).
It is understood that B! must be
taken as equal to O in the expres-
sions in zone (1).

WSS Sy

o

Inversion of the first two equa-
tions (calculation of o and s as a
function of Ay and Ag in order to
introduce these values into the third
equation to get an explicit formula
giving the consumption as a function
of the rotation desired) is possible
only in certain particular cases.

But these formulae lend themselves
very well to a numerical resolu-
tion by successive approximations.

Reduced rotation ‘§|=[Ajl/\lZPmax/Am/At

N
B
|

Ll oo T oIt This resolution is facillitated
by using nomographic charts traced
for constant values of eccentricity
e in the plane (S) which furnish a
first approximation by interpolation.

0 02 04 06 08 1 ,

Figures 14, 15 and 16 show
such nomographic charts traced re-
spectively for e = 0, 0.2 and 0.8.
Fig. 13. Contrasted Performance of Propul-

sion Systems (Whole Numbers in Revolutions).

Eccentricity e

Only the lines

P System (82) -—- S}’Stem (S,c) .___,System (S;) d=Arc g /f—;_/ = Cte,
Wvar,P=Pmax Weete, F< Fmax  Wacte=Woptimet /=121 \/T _ cte,

N 2N F, o
(Continuous thrust) me
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A

characterizing rotation, and :
[

have been represented.

80°
IV[max:l - 610 ° 70°

M- 181 fwiam)

08+

Q7—,

[Vlmin = 2In=0637 4 4

|[Nmax=2[r=0637 06 05 04020
IAI=IA_/”2N"FmaX

14,

Fig. Nomographic Chart e

13
§1278°28" _ egaa

1102 S hs

70°11, 60°

50°

I X

i IQ9

Y

Ivl-_ WA m|
g8-

0’7 e
ivIming 069 I
[Vmin= £=0,637 $

IA]max,D:qss

Fig. 15. Nomographic Chart e 0.2.

la/t

WiamT = Ct€

[As]
ac

(specific rotation),

Knowing the rotation (&, Aj) to
be made, the number of turns N, the
maximal thrust available Fmax’ it is

possible to place the point S(§, [A])
on the nomographic chart, which gives
[v|, (therefore the consumption TAm[
if we know the ejection velocity W)
as well as a and s (namely the con-
figuration of the thrust arcs).

The lines § = C'° corresponding
to values of § above 61(e) Arc cos e

are situated completely in zone (2).
The rotations around axes too distant
from the major axis therefore abso-
lutely necessitate two thrust arcs
per revolution, no matter what the
value of the parameter |A|

/84

This result can be interpreted
simply in the case of bi-impulsional
solutions corresponding to the point
S1 of the nomographic chart by

appealing to the notion of Contensou's
"maneuverability domain'" [4] (Figure
17):

an impulse dC applied at the
point M, perpendicular to the plane
of the orbit, produces a rotation 3?

of the orbit around OM proportional
to OM.

> R
Therefore this rotation can be represented by the vector OM, if the

>==
impulse is applied upward (z > 0), or the vector UM, opposed to 3ﬁ, if it is

applied downward (z < 0).

With the same total impulse dC, it is possible to achieve any rotation
the image of which is found inside the smallest convex

ellipses which are loci of M and M.

/85
contour surrounding the

As a matter of fact it is enough to break-

down the impulse 4C into two or more impulses applied at different points of

the orbit.
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The total impulse dC
being given, the maximal rota-
&° tions which can be obtained

2.25 55e

(vmin,0=2.02 ,30°
8,=36" 53’ 90*

v |=167 5 correspond to images on the
p g
SiTN contour of the maneuverability
domain thus defined.
[V]=18;limam If the axis of rotation
5° is far from the major axis,
(8 > 61 = Arc cos e), the
\
\ image p is found, e.g. on the
| .2 / \‘ 'v'maf‘? —
l%fi*qﬁi%- _ P | (180 segment BB'. Then the rota-
202 2 5 o .
Plax 0202 [N|=|81 /20 Finay ' x ‘%?i: tion _OTI must be broken down
Mar X =5-=0,657 -
into two rotations, generally
unequal and respectively
>
Fig. 16. Nomographic Chart e = 0.8. around OB and OB' found by

successively applying at each
revolution two unequal impulses directed contrary to the peaks B and B' of the
minor axis of the orbit (0).

The <mpulsional solutions corresponding to the frontier (I''') (mono-
impulses) and to the point Sl(bi—impulses) are such that the parameter || is

zero. Therefore they are obtained when the maximal thrust available (related to
force of attraction at distance a ) is very large in respect to the rotation
|aj| to be made per revolution.

Given N and Fmax’ a weak rotation, corresponding to a value of IA] such

that O <[Al €/ Ny =%:, can be made around any axis at all.
-

T

Fig. 17. Maneuverability Domain.
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An important rotation, corresponding to /Ahux z —7;</A/ I M max, o,

cannot be made around axes too close to the '"parameter' (§ < § 1im (lxl) given
in Appendix 10.

. . . & 2 .
The maximal obtainable rotation [I 'max,o"Jffff 2.2t +—51f—-] is

a rotation around the major axis (8 = 0) obtained by applying thrust continu-
ously. .

. .o . = [+ e . . -
The maximal specific rotation IV max = ;%?% is obtained in the case

of a rotation around the major axis (8 = 0) using an impulse at apogee per
revolution ([A| = 0).

Specific rotation diminishes when we go from impulsional solutions to
solutions where the thrust is applied continuously. As a matter of fact the
thrust arcs are more and more spread out and the thrust is applied in zones

where efficiency [5:] is weak.

Minimal specific rotation Voo =2 is obtained for a rotation /86
m’”)? T
around the parameter (& = EJ in the case of continuous thrust. Lines |v| = cte
corresponding to T¢IV < V) T T are entirely situated
v/ <ivi/= sind, V7I-ez
in zone (2) (two thrust arcs). The values of |v| included between 1 and ]vll

therefore correspond, among others, to specific rotations relating to bi-
impulsional solutions (point Sl)'

Particular Cases.

a) Continuous thrust (point 0 of the nomographic chart).

for $=0,B'=Bp"=B=Arc cos(e cos )

/",/=2777/7 [3@(2/3-n)+4(7+ e?) cos x sinfB- e cos 2 e sin Zﬁ] (27)
/)_,/:27_,7 (4% sin < sinB- esin2« sin 2B) (28)

Al=1
A 25,

whence the values of § and of |v| = |A]| given in Appendix 10.
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In particular, for a = O, 60 = Arc cos e = 61 (evident in Figure 6) and:

Mopaw o=V o=lrgol=3e (1 &), 2+e*
/ ,0 ; n ,——_]-e 2 7 - (30)

b) Mono-impulsional and near-mono-impulsional solutioms.

These solutions correspond to points S of the nomographic chart respec-
tively on the frontier (T''') and in the vicinity of this frontier.

Making 8'' = 7 - € (e << 7w) 1in equations (24), (25), and (26) we derive:

Jyj=_tdil  _Vi-e* (7 m* (1-ecos§) \* praer //\/3)=
WIAm] 7-¢cosé 6 (7-e¢%)*

(31)
/-¢? 2(1- 5)
Vi-e? (7 mi(Trecos 8Py e 22).
l-ecos 6\ 6 (1-¢2)?

This formula directly furnishes the specific rotation Iv] as a function
of the parameters |[A| and §, that is to say as a function of § , |2j], N and
Finax.

Considering the mono-impulsional solution (A = 0) of Figure 17, we again
find:

[vi, —18JLOM_ r_Vi-e?
PPAC h R T-ecesé (32)
maximal for § = O:
/V/fmp., max. = ;_* z . (33)

The extension of the thrust arc around the point of impulse causes a relative /87
loss equal to

it (7 e cos - 3)° /\c where Ag = At propulsion on an arc

6 (7-e )3 T(par/od )
2
This loss is maximal for cos § = cos 6y = ¢ and is equal to —Té— ( 4 prop)2
T

no matter what e may be, in agreement with the results shown in [26].

¢) Bi-impulsional solutions (point Sl)‘
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Considering the bi-impulsional solution of Figure 17, we directly obtain:

_lajl_op_ b - 1|
\Vib/'—/'mP'— A(,j‘ & hsind sind (34)

d) Elliptical orbit of weak eccentricity (e << e << 1).
This is a very important case in practice.

A limited development according to the increasing powers of eccentricity
e, clearly stated in Appendix 11, leads to:

Zone (1): 1 thrust arc per revolution:

_mlAl ¢ Ve cos 5+ order ¢ ¥?
> (35)
A%
I/ M7ZZ%;7 T+ecosb- 5 + order@"- (36)
Zone (2): 2 thrust arcs per revolution:
z=~772/_)‘/ >Ve cos 6 + order e¥? (37)
Wi=14i1 ~. z T+32%  2%c0s*8+ qpdere® (38)

WIAm]  Arc sinz 2 (Arc sinz)? \7-22

In the particular case of the circle, expression of the specific rotation is
very simple:

by
Wl _ = 2

/irc Sin (—72—7 //\/) ' (39)

In this case there are always two thrust arcs per revolution and they are
symmetrical in relation to zero.

1,2.3.2.3. Comparison between propulsion systems (S]) and (52).

The comparison will only be made for rotation around the major axis 6x (8 = 0)

and rotation around the "parameter" 6; (6 = 35.
_ 1YY

In Figure 13 we have shown the reduced rotation /k/“v? Booxldm] aE  3S 2
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function of e in the two following cases:

a) Continuous thrust [Propulsion system (Slc)]

ISl =IA] .. o= 3e (1 _Arccose), 2+e?
Vel 7 7

31,

I :/A/,,,ax ’—Z='2ﬁ' (independent of e). /88
2

As in the case of the system (SZ), the greater the eccentricity the less
costly is rotation around the major axis in relation to rotation around the
"parameter’.

For § = %; the penalty due to not modulating the ejection velocity is

constant, no matter what e is, and equal to the value already obtained in the
circular case:

7

A/?/: \[2— ~ (.10 or 20% of mass consumption,
vl 7

V2

b) Optimal ejection velocity W* [System (Si)]

_2
T

For 6= 0(— x=0) and 5:%’_(—4 «:%7_), /Al and /vl are only a
function of s. For the choice W = W*, |z| = YAv is maximal in relation to s.
Let us first treat the case § = %\ Then:
//\/=§—5//;ﬂ, /\C=-727ﬁ
with B = Arc cos s (independent of e)

therefore:

/T*/:max_L)\_/: 2 mox sinp _ |2 sinp*
B Vic VYm B VB T VB*

where B* is the root included between 0 and %~of the transcendant equation:

bg =20 (40)
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An approximate value of B* is B* = 66.75°,

which gives |z*| = 0.68.

In the case § = 0, it is necessary to find the point furnishing |c|max

corresponding to a value of e on each nomographic chart. The result is shown
in Figure 13. The penalty due to not modulating the ejection velocity is

weaker than in the case of continuous thrust.

In the circular case, this penalty is equal to:

1 _ 0,68
AlxI_ N2
T 7
V2.

=0,038

or only about 8% of mass consumption instead of 20%.

In this circular case the value 8* is easily found by applying condition
(I,3 - 80). The area (1) of the cylindrical surface between the commutation

1evel z = +1 and the ellipse (E) must be equal
it be:

S
0 BB E B

2
Fig.18. Optimal Length of Maximal Thrust Arcs.

to area (2) (Figure 18). Let

ﬁ*
cost dL— 25" cos

or else

sinBE 2p%cos B*

which is the condition obtained
in (40).

11,2.4. Conclusion. /89

Economic infinitesimal ro-
tation of the plane of an
elliptical Keplerian orbit is
found by applying the thrust
perpendicularly to the plane
of the orbit.

For the propulsion system
(8§,): W variable, P = P , the
2 max

thrust is modulated and the
thrust extremity of the vector
describes an ellipse.

For propulsion system (Sl):
te

wW=C ", F < Flax Maximal chrust
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is applied on one or two arcs at each revolution.

For the two systems, the thrust "couple' makes the orbit turn in a
direction approximately perpendicular to the axis of the '"couple" by a "gyro-
scopic effect.

In the particular case of a circular orbit and in the case of any orbit
for a whole number of revolutions, there is no 'uncoupling' respectively
between the rotation around the axis of symmetry of the transfer arc and a
perpendicular axis, or between rotation around the major axis and rotation
around the 'parameter', except for the propulsion system (82): W variable,

P=P
max.
te

For the propulsion system (Sl): W=C"", F i-Fmax

there is still mutual

2

non-induction between these rotations.

The penalty in mass consumption due to not modulating ejection velocity W
is generally of the order of 20% if the maximal thrust is applied continuously
and only of the order of 8% if (constant) ejection velocity W is optimized.

Finally, the previous study has emphasized the fact that rotations around
the major axis are less expensive than rotations around the '"parameter',
especially for large eccentricities.

11,3. OPTIMAL TRANSFERS BETWEEN CLOSE COPLANAR CIRCULAR ORBITS /90

11,3.1. Introduction.

This is a matter of achieving, for a given transfer angle AL (Figure 1)
the relative, optimal dilatation Aa/a of the radius of a circular orbit.

We suppose that there is no rendezvous.

In the case of propulsion system (Sz) with a variable ejection velocity
W and limited power, the problem has been analytically resolved by Gobetz [38]
without using the orbital elements as state coordinates.

It has been taken up again by the author [45], this time using the orbital
elements, then extended by Gobetz under the same conditions to the rendezvous
case [39].

In the case of propulsion system (Sl) with a constant ejection velocity
W and limited thrust (F E-Fmax)’ the problem has been resolved by an analytice-

numerical method by McIntyre and Crocco [41-44] and by Hinz [52] (the latter
treated only the case of continuous constant thrust), without using the orbital
elements.
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Fig. 1. Transfer Between Close Circles.

The introduction of the orbital elements into the present study brings
with it a few simplifications and particularly permits us to obtain an approxi-
mate explicit formula giving consumption in most cases [45].

The only components of the kinematic adjoint P which are not necessarily
zero are: p,, P, and pB.

We shall posit:

Po = Pe €05 L,
(D

P‘@ = pe 5/‘/7 LQ

The origin of the arcs will be taken in the middle of the transfer arc

MM .:
Of Zo:_é__[;
2
L,=+A24 (2

11,3.2. Optimal Thrust.
11,3.2.1. Efficiency curve.

In § I,3.2.4, we have already seen that the efficiency curve (P) is an
ellipse (Figure 2):
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(X=p, sin(L-L,)
2

’ 2 [-1 (3)
Y=2p,*+2p, cos(L-L,)
deduced from the circle (C) with center w (X = 0, Y = 2pa) and with radius
2pe through orthogonal affinity of axis MY and of ratio 1/2.
Y
’ C
2\ (X) X
N ,
L
o
AL )
.,//
Ny
L+l X
TEN q 2___ —_ 7__— -
o®
M@ 7
Fig. 2. Efficiency Curve,
11,3.2,2. Optimal thrust. /92

The optimal Zaw of orientation of thrust only depends on L, and on ratio:

q:.’iizo (4)

i.e. on Le and on the position of ¥ in relation to (P).
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It is given by:

2 [g+cos(L-L,)] )

In order to follow easily the variations of the optimal orientation of
thrust, it is possible to use a construction different from that in Figure 2,
although strictly equivalent, by noticing that w = L -~ Le is, in Figure 2,

nothing but the eccentric anomaly of point P:

Let 6?1 be the axis deduced from Ox by rotation + Le (Figure 3).

Caka
.‘-~21
@) M

Fig. 3. Optimal Thrust Direction.

The ellipse (E) closely related to the circular orbit (0) is plotted in

the orthogonal affinity of axis 0x, and of ratio 1/2.

1

The point D is placed on Ox, so that OD = -q S 0. The angle y is then the

1
angle (B;l, Bﬁ). Thus the thrust direction is deduced directly from the posi-

tion of point M on the orbit (0).
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Let us note that during a revolution y sweeps an angle < m if [q] > 1 and
an angle 2n if |q] < 1.

¥ undergoes a discontinuity equal to m for q = +1, w = 7w or q = -1, w = 0.

If we change Lo into Le + 7 and g into -q (that is to say P, into —pa) /93

the position of D does not change, but ¢ 1is changed into ¢ + =, i.e. thrust
is reversed.

It is evident that then Aa is changed into -Aa.
OPT IMAL THRUST MODULUS.

1. Propulsion system (S,): W variable, p =p . .

The optimal modulus of thrust acceleration is:

DN

(6)
2p,

y AP = [p2 sinur # 4 (py2pe cos w)? ] =

The evolution of vy, when L (therefore w) varies, can be directly followed
on Figure 3.
te

2. Propulsion system (Sl): Ww=c¢Cc", F<E .

max

f= //?/= according as //57/: //1/[_5)3/% 7 (7)

0

. . xterior - ]
i.e. P on {the exterio } of the circle (Z) centered at M and of radius 1,

the interior
{the exterior
the interior

of radius 1/2 P (Figure 3).

(Figure 2) or else N on } of the circle (Zl) of center D and

When + 0, the efficiency curve is reduced to point w(Mw = 2p_). When
P P P,

the thrust is applied it is horizontal. According to whether the point is
interior to (Z)( pa] < 1/2), exterior to (Z)(]pal > 1/2) or on (Z)(lpa] = 1/2)

there is an absence of thrust, continuous thrust or a singular solution

(|§:] 1) of the type I bis (see § I,3.2.6. and 11,1.2.).

11,3.2.3. Directrix Curve (D).

If the normalization condition of the adjoint is such that IB:] << 1, the
locus of P in absolute space is a Keplerian ellipse (OP) of focus 0, the

elements of which are given by (I,3.48-49):
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e

CPR I ¥
_ 8
3,=8 (8)

1}

Figure 4 has been plotted in the case where Le .

I1,3.3.0ptimal ''Dilatation' of
the Radius of the Circular
Orbit. Consumption.

t1,3.3.1. Propulsion System (Sz).
Equation (I,3 - 70) furnishes

the adjoint as a function of the
variations imposed:

Ps
PT= I :(G)—fﬁ:
P A/ /94
Ps
Fig. 4. Directrix Orbit.
-1 <G, ><G, >
<G 23< 6 >0 As o P97 () JAY:)
Al ) b AL
<6,,><6,.>0 Ax | K6yu2<6550 0
Al ) )
0 0<Gy> A o 0 7 0
AL ﬂ%ﬁ>
with:
J=¢6y> <Gy >~ < Go 22 20
whence:
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( K6 .> Aa \
p_ * X (G““> 0
peize S >0)
G,. > Aa
4 e(”‘(;‘—) m“(zce Pe) (9)
0
P:O::}[e— e or £2=COSAQ=17
and in particular,
5.3 sinAL
g=Fo o g, $5x> _ ¢ AL (10)
e —————— —FCe¢ " —
R <6y” 8.sin(AL/2)
AL/2

It is sufficient to study the cases where Le = 0 and €y T +1. Then:

pra% 0 according to < Gaa >3 0 or:

(4k+2)T<AL <4 (k+1)m

4hkm <AL <(4k+2)m

Change P, into P> that is to say €e into “€g> change q into -q (see 10), /95

that is to say P, into -P,- Thrust is reversed and Aa is changed into -Aa.

If therefore, , for the given angle of transfer, AL, the sign of Aa
obtained with the hypothesis €, = +1 is mnot suitable, <t <8 sufficient to

reverse the thrust.

Equation (10) shows that the optimal law of orientation of thrust is only
a function of the transfer angle.

When AL increases from AL = 0, q begins from value q = -1 and remains
slightly superior to -1 for O < AL < AL = 7 (Figure 5). The value AL is the
root > 0, not zero, of the transcendant equation:

s5.35mAL _ g sin(4L/2)
AL AL /2 (11

An approximate root is: AL = 187°.
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‘”q-_-_"@_
Pe

+51

0 X Ao e - Y- L IA—

.| 180° 360°  5%0° 720°

Transfer angle AL

-5t

Fig. 5. |Evolution of Parameter q Defining the Optimal Law of Orientation
of Thrust. (System Sz).

For 0 < AL < AL, therefore, point D is slightly inside the ellipse (E) /96

(Figure 6). The corresponding optimal thrust is plotted in this figure.
Inversion of the thrust has been carried out so that Aa > 0 (*). Again we find

the acceptance of the optimal thrust laws found by numerical methods, as in
[34] and [35]. It is important to note the reversal of the tangential thrust

. —~~
in the central zone of the arc MOMf'

" The extension 28 of the reversal zone for AL << 7 is:

28~ AL,
B = (12)

When AL > AL, |q| is > 1. The point is outside the ellipse (F)(Figure 7).
There is no longer a reversal zone of tangential thrust.

(*) The result being that ¢ = (33, Bﬁ) and not (B?, 3ﬁ).
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(%) (S1)

Fig. 6. Optimal Thrust Law. (Weak Transfer Angle).

Fig. 7. Optimal Thrust Law. (Significant Transfer Angle).

When AL = 2Nw (or AL >> 27), P = 0. The efficiency curve is reduced to

a point w. Angle ¥ is always zero. Thrust is constant and tangential.
CONSUMPT 1ON.

The reduced dilatation is given by equation (I,3 - 73):
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T TR/

/3’/-‘—— - /_A a:/ :( 5 _) /22 2 7._ - ~7__2__‘ (13)
V2P [AmiAL < Ooeer > 5.3 SindL
max ’jaiiﬂ——J

In Figure 8 have been plotted the variation of this '"reduced dilatation'
,cl as a function of the transfer angle AL. When AL increases from AL = 0,
the specific dilatation abandons the value zero and after a few oscillations
stabilizes at the value 2, a value which it reaches without passing it, for

AL = 2Nn (whole number of revolutions).

indefinite

lAa!/\/ 2Pmax |Am]AL
4h\} —
g

——— Systém Sz W veriable , P=Pmax.

kY]

1

N Systém (Sy0):W= constant , F X Fmax.

S (Continuous thrust)

% ——— Systém (S,*) : W= constant =W* optimal

'8 1 m——— b 1 1 . W
o 0 S0 180 270 360 - 450 540 630 720

o

Q

o

Transfer angle iy (iegree§)

Fig. 8. Comparison of Performance of Propulsion Systems.

If instead of imposing Ae = 0, the variation of e is indefinite, the
"reduced dilatation" is:
/)= __  1Bal  _ /ﬁ< G,, > =2 (independent of AL)

V2 P . 1AmidL
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Thrust is tangential and constant. /98

Figure 8 clearly shows the penalty which condition Ae = 0 entails, par-
ticularly when the transfer angle is weak. The penalty is zero for AL = {iNﬂ-

As a matter of fact, we have seen in §I,4.1.2. that there is then uncoup-
ling between the variations of a and e.

CASE WHERE THE TRANSFER ANGLE IS WEAK (AL = 0).

The principal part of'[c], calculated from (13) is:

5] ~ AL
a +Aa F 2V3 ()
- : —O

in) which furnishes the tangent
at the origin of the curve
traced in Figure 8.

This result can be
found again very simply:
when the transfer angle is
very weak, the thrust accel-
eration necessary to achieve
the transfer is very large
Zfﬁf é§7 compared with the gravity
o) acceleration. Everything
happens as if we were opera-
_ ting in the absence of gravi-
AL/2 +Al'/2 tational forces. It is then
easy to demonstrate that, in
order to travel the length
|aa] in the time AL with a
zero velocity at departure
and arrival, the most econom-
ical method is to use a
= linear law of acceleration
L variation in L (Figure 9).

Cost is then:

— (S *
———— (Sfc) Continuous thrust NT = @_‘2_2_ (15)
——— (Sn-) Impulses AL>

—— (S;) QOptimal

whence the result (14).

Fig. 9. Very Small Transfer Angle,
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11,3.3.2. Propulsion System (Sl)' W=C ", F —<-Fmax'

11,3.3.2.1. Generalities.

The most rapid method is a direct integration of the equations (I,3 - 65):

AL
+ 5= ‘
As =./_AA /PE‘/ (Xl(ax+ Y/(ay) dl (16)
2 v
Wy
2 F
dun0ef 7 i e V)
T2
Ap= 0=f Uo—% (XK gyt YKy ) L (18)
_ 4L v
with: ) N
By 1= (38} cos* w » B p cosw + 4p5r Rl ) (19
Fetp0(0)  (0=1p1-1,0(0)= 12557 8 ) 20,
XKaX+Y/(aY=4(/b9 + p, COS W) (21)

'X/fo(x+)’/(’uyng sinw sin(w+L,)+4p, cos(w+L,)r4p, cos weos(w+l,)= (22)

(3pe cos 2w+ 4 p, cos wrp,) cosly-sinw (3p, cosw+4py)sinl,

Xpr* )’/(ﬁy:—p<Z sin wcos (W+l,)+ 4 pysin(wW+l)rhp,coswsin(wW+l,)= (53
(3p, cos®w+ 4 p,y cosw +p,)sinl, + sinw (3p, cos w+4p,;)cos L.

The result being:
ba__A.

/inax (24)

Ax _0=Bcosl, - Csinl,
ax (25)

_0=Bsinl,+ Ccos L,
max (26)

ih

g

/99
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with:

+ 2= - L
2
Fooe IR 27)
AL ¢, i
2
4l
A T/J’_E’ te F 3p, costw+ Gppg COS W P, du (28) /100
Yar _ . Fmax //DV/
2
+AL 1,
z £ 3p,cos w+4Ps y
C: — .
£ Ip, 1 (29)
-V max 4
K -4
Equations (25) and (26) are only verified simultaneously if:
B=C=0. (30)
Now, —
/Pyl .
fF —
-1 FORY 4(1570).
P //;7/0 g (31)
"{2 /F At the moment we are only
=" considering regular solutions.
My 7 @)
3 e
7 The condition C = 0 can
Ty NF only be realized in the fol-
'///7/” A 3 (g) lowing cases (Figure 10):
2
A3
Y7 1. If at least one of
o X the points MO or Mf is found
——— e L —_—
D 0 on a propulsed arc (let us
suppose that it is M.), it is
./’g '/f{ N 0 s
My necessary for IpV]f = |pV]o,
‘/%z'f N therefore that ]Vf occupies one
N -
% NN 3f of the positions ZVf, le, sz,
S~ st, that is to say that Mf
M M, occupies one of the positions
w/sf Mf, le, sz, M3f situated on
a propulsed arc.
Fig. 10. Determination of Le'
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The position M, = My signifies that the mobile makes a whole number of

revolutions.

This then is equivalent to using the "antisymmetrical" solution in
2> . . .
relation to Oxl (different from 6?) or any solution deduced from this by rota-
tion around O. In particular, we can choose the "antisymmetrical' solution

in relation to Ox. We shall show that then the regular solution is a solution
with a continuous tangent thrust (|q| + =), and therefore in fact "antisymme-
trical" in relation to every axis passing through 0. Therefore there is really/101
no degeneracy by '"rotation" of the solution, but rather a unique solution.

Positions M. . and M,. would correspond to solutions where the optimal

1f 2f
thrust would be antisymmetrical in relation to the axis Ox, different from 6?,

1
without there being a whole number of revolutions. Such solutions could only
exist if D was placed between the two curvature centers of the ellipse (&)

situated on the major axis 0x,, therefore for lq| < 3/4.

1’
Now, for |q| < v3/2, the integrant of B (formula 28) is > 0, therefore B
is > 0, since there is at least one propulsed arc.

Therefore positions M. . and M2 are to be rejected.

1f f
2. We have just seen that conditions B = 0 implies |q| > V3/2 > 3/4,

therefore that the optimal solutions do not entail any propulsed part of the

MM
type M.M,.
P .
If MOMf are then found on the unique ballistic section MM the integrals
B and C are not modified when MO and Mf coincide respectively with M1 and M2.

C is really zero then, but B is # 0.

As a matter of fact we can consider this solution as a limit of a solution

where MO and Mf, symmetrical in relation to 6?1 and situated on the propulsed

. h .
section M M,, tend respectively toward M, and M,. Now,we shall see that the only

solutions of this type which assure that B = 0 are such that the arc MoMf < 2m
contains the ballistic portion MZMl' (Here it is really a matter of the arc

MOWf < 27 and not of the transfer arc ﬁ;ﬁf which itself can be > 27).

In conclusion, the regular solutions are always antisymmetrical in

relation to 6;(Le = {g) and the points of departure and arrival MO and Mf are
always the extremities of propulsed arcs but do not generally coincide with the

points M1 and M2.
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Here again it is easy to see that it is possible to limit oneself to the
case L, = 0. If the sign of Aa found is not convenient, it is enough o

reverse the thrust.

Equation (26) is verified in an identical manner. The equations (24) and
(25) are written:

As :A5/+ATL i g+ cost) J (32)
Fox [ar Foa V3cos?l+8gcosl+bgted

+ 5 Seos?l +bgcosl+T
0=F= r oyt tq dL.

ac /;ax \/36‘052[ ’“896'05[7‘4927&7 (33)

The integrals taking part in the second members are elliptical integrals
which could be reduced to the sums of elliptical integrals of the first, second
and third species. But integration (for any q) is not absolutely necessary
to discuss optimal solutions qualitatively.

1,3.3.2.2. Optimal solutions.

a) Let us consider the function f£(x) of the Variable X = cos L:

f(f:ﬁ___(x_).—__]_ Jxt +4qx+7 a’x, (34)

# s N(-x)(3x +89xr49%¢1)

Let us immediately note that:

f,(17 g (- 1)-£(-x) (35) /102

which permits the case q > 0 to be deduced easily from the study of the case
q < 0.

The function f(x) can also be calculated in an explicit fashion for cer-
tain values of q:

PARTICULAR CASES (Figure 11).

V/ g=

L=Arc cosx

f'(r).—____ uj’.r 7 dx /\/ ‘/3 sin?l dlL
V7%
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Lz=Arc cos x
frx)= [( _%-3,1)] =£ (/(:%,[:Arcco:x) (36)

o

where F designates the elliptical integral of the second species of modulus
k = V3/2 (a = Arc sin k = 60°) and of amplitude L = Arc cos Xx.

Af(x)

Fig. 11. Function f(x).

g=-V3/2 /103

L=Arc cos 2= Arc cos x
frx)=1 /(1= ﬁfﬂfﬁ)za’z7 <\/3m;l+ 1 )ﬂ
2/ 2-V3cost 2-V3cost

Fex)=— V3 sinl v dre t M =g
5 *Arc tg e ( re cos x). (37
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xX
Fex)=—1 /- 3x dx .

2) V1+)(5-3x)

We posit:
yz;_ 7+ (38)
5-3x
y
f/x):—y‘wdé’,zt 4y (39)
/ ﬂ3y2-+7)2 7+3y°
‘/(7:-00
LzArc cos x
f(l‘):-% 2cosl dl = _sinl-_\V7-xt (40)
0

b) For 0 < AL < 2w, the optimal solutions correspond to negative values of
q and to Aa < 0. There are two thrust arcs, as Figure 12 shows. The point D
can be either inside or outside the ellipse (E) (Figure 6 and 7). Points Mb
and M1 are such that condition (33) is satisfied, namely:

f(xa): frx, ). (41)

/104

A

fg (%)

— . Xa_
&)
J4f‘ 1// mmn= Propulsed arc
©) ’#;  ——— Ballistic arc

A

Fig. 12, Optimal Thrust (System S]). Transfer Angle Less Than One Turn-
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ey

Therefore the values X and Xy > X, are the abscissae of the intersection

points of a particular curve f = fq(x) with a parallel to axis 0x.

The solutions corresponding to a particular value of q or to a particular
value of AL are studied in detail in Appendix 12.

c) For 2m < AL < 4w, the optimal solutions correspond to values of ¢
above 1. There are three thrust arcs, as Figure 13 shows. These are the arcs

MOMl,'ﬁ;ﬁl, and Mzﬁf. The points MO and M1 are such that condition (33) is
satisfied, namely:

F(x,)~ f1x,) + F(x, )= F(0) = 2f (x,)—F(x,)=C . (42)

%f(x)

Fig. 13. Optimal Thrust ({System S]). Transfer Angle Between One and Two Turns.

Therefore the values X and Xy < X, are the abscissae of the intersection
. . 2> . . .
points of a parallel to axis Ox with, respectively, a curve f = fq(x) and 1ts

transform 2f by affinity to axis 6;, in direction Of and of ratio 2.
These solutions are likewise discussed in Appendix 12.
d) For 2Nm < AL < 2(N + 1) =, g is <0 according to whether

. odd
N is {even’ and there are N + 2 thrust arcs.
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11,3.3.2.3. Consumption.
a) Development around q = -1.

Appendix 12 shows that for -1 < q < - V/3/2, we get all the optimal solu-

tions for the angle of transfer included between 0 and 2 Arc cos (1/3) (for
impulsional solutions)} or even 2 Arc cos (-1/3) (for the "continuous thrust"
solution). For the total of these solutions, let us posit:

with:

122

q:—7+£ (43)

O0gex \/5 0,134 |

- =

(44)
From (32) and (33), we derive:
44
Aa :A:A"BT/ 2 F _3€g.s‘l+1rco.r[(7‘q)+4q 7
Frox /as Fomax \/3ca.rz 8960:Lf4q +7
-V
2
/ £ E(7_coyé)1/z(5-3’cw[)"’/‘+ (45)
Jar  max
2
2(77«60;[)(7-co;L)J/Z(ﬁ”-j‘co;[)-%éz,uol«der 53’]0'1_
Changing the variable (38), it becomes:
Yo
d :76‘1—__7_. A/‘C fg (ﬁy)+'—y‘z—:l+order£2' (46)
max L‘/’j— 7+3y );
Now, the equation of consumption is written:
LAl
Ny, = AC _WAml_ [ F g-2(L,- Ly)=DL+2L
c1= - o] — 7" 7
o max | e “n

2
The result is that:
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([ 7+ cos AL |72
j/.: _
° 5—300:&
L 2
(o ®
1+ caj(_é_L _W/Am/)|1 72
y 2 2F/773X
" E-m;(_ﬁi _Widm]
- goal]
k b

It is important to note that in development (46) no term in e occurs.

If we make a decision to overlook terms of the order of 52( < (0.134)2 = 0.018),
formula (46) reduced to its first term is an eaplicit formula permitting a
calculation of the transfer Aa which can be achieved with a consumption |Am].

/106

The function:
7+(0;Al_ 2

A)=16\1 Arcty (V3y) o Y |with yo| 2
9 (44 Vel y_( y)+7+3y2 5—36‘05424. (49)

is tabulated precisely in the table below and plotted on Figure 14.

AL degrees g (AL) AL degrees g (AL)
0 13,673 200 9,725
20 13,642 220 8,784
40 13, 549 240 7,742
60 13,387 260 6,607
80 13,150 280 5, 391
100 12,829 300 4,106
120 12, 416 320 2,767
140 11,903 340 1,393
160 11,286 360 0,000
180 10, 560

Knowing the transfer angle AL, we get point M. Then we bring in

NM = H%QEL . Then the transfer achievable with consumption ]Am] is given by
max

PN =2 <o, B
max
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A
5
16 +1 Py
3V3 l p
: A= 148l
10t l’ Fmax 1
N A ._.WIAml
&7 F max
3 s
o

T ST U G
] 30 60 90 120 2L, 150 1801210 240 270 300 330 360
Transfer angle AL (degrees)

Fig. T4. Curve g(aL).

The "'specific dilatation' is given by: /107

Al 1ba] NP
/V/:L/:Li — =cols B . (50)

A Wlkm] ~ W

It is maximal when P is in M, that is to say for bi-impulsional solutions.

Figure 15 furnishes the values of the "specific dilatation" ]v] as a

function of the transfer angle for different values of the parameter

/"1/= ZLTE

max

Bi-impulsional solutions (Al = 0, Arc 66).

In this case:
cotg ﬁ:-M:(ﬁcw é)_i)%(f_j’mfd_l)%. G
(41 2 2

The curve can be graduated in values of q. As a matter of fact equation

(33) is written:

,V,approximate =
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AL

+ 245

2 7-3cosl)(T-cos L) (5-3cos ) "2
0=8¥F (1-3 cos L)(1-cos L) (5-3 o5 L) e
F
/ ac mEX N 24 &(7+ cos L}(5-3co:l)'3/2(7- cos l)—’/zv‘orde'r e?
2
or, for bi-impulsional solutions: /108

0-98 _ (7 3 cos Al—)(/ cos A/—)Vz(ﬁ' 3(05431)

d(AL) 2

4 5(7+ m.rézé)(j'-Jco;_%é)'%(ﬁcos_ﬂz_l)' 2 _ order €2

An approximate value of € 1is therefore:

-1

E=gr+ 73_%(7—350)" 42_[_)(7- faféz_é)(f—j’ cos %)(7+ cor%ﬁ) . (53)

Er
-3
A
<aix
Al
2
j oy
2
® o F 9
)
b Ol
% — JNumerical results
° Impulses (Mc Intyre — Crocco)
lE A’r:|£|:0 __ Approximate analytical solution
%) (q = -1
o —_— Approxmlatg analytical solution
) (q = -=)
Continuous thrust
l ! - ! ! ol
60 120 180 240 300 360

TRANSFER ANGLE AL (degrees)

Fig. 15, Propulsion System (S]) Performance.
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The preceding results can be compared with those furnished by the follow-
ing direct caleculation.

The application of an impulse forming angle ¥ with the horizontal produces:

_48__—_/(3), cos Y= 2cos (54)
ﬁr)axAt

A K ysing+K ycosg=sinl sing+Zcos L cos .

Foox A6 (55)

Condition Aa = 0 is written:

Ly g=— Zcotqg L ou [cos ¢[= (’/’+ 4 colyg ZZ)-%. (56)

Therefore the '"specific dilatation" is:

183l _2/cos )= (T , cotg? AL) 2
e Jers 9/=(L o cotg® AL) (57)

|v| calculated =

The values of ]vl given by (51) and (57) coincide exactly for AL = 0
(|v] = 0) and AL = 2 Arc cos (1/3) (|v] = 2Y/2) because, then, & = 0.
3

Moreover, the two curves |v (AL)| are tangent in these points, as the
calculation of the derivative shows:

-1, -7
%ﬁﬁ_:Lﬂn é_é(4-j cos _@)(/- cosé_/-_) 2(5-3c05£3_£)
a2 2 2 2 ‘

d/"/ca/c.,z 4(7+3 cos’? ﬁ)-% cos AL .
J(AL) 2

The two curves are very close to each other, except obviously when the

value AL = 2 Arc cos %is exceeded and when the value AL = w is approached,

where q can no longer be considered as close to -1.

Let us note that:
i/i/ai&f_"&._] = [—————“/‘)/“”C' : J :77 : (58)
d(AL) 4L=0 d'(AL) AL =0
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This result can be found again very simply by a reasoning analogous to
that of § I11,3.3.1.: the first impulse must be made to travel the distance
[psa]/2 at a constant velocity in the period of time AL/2 (Figure 9).
corresponding characteristic velocity is:

The

AC =/Aa//2 =/Aa/,
TAL/2 AL

The total characteristic velocity is:

AC= 24C,= 2/43/
whence ays

Jv/=l48l _ AL=ep 1Y/ _ 1
AC 2 AL 2

"Continuous thrust" solutions.

These solutions correspond to the case where point
in Pl' Therefore:

P of Figure 14 is
AN=Dd 76\ T Arctg(V3y ) TT_, Yo _ T (59)
1 f_,.nax [\/5 ( b) 3\/—3- 7+3){72 4

with

1+ cos AL %

4

5-3cos AL

Agreement with the numerical results of McIntyre and Crocco is satisfac-
tery for q > -1.

The approximate curve (Figure 15) and the numerically
calculated curve are tangent at 0(AL = 0) and at point AL = 2 Arc cos (-1/3)
corresponding to:

[h =189 _ 81 ~ 4 84 [V]=471/3V5F A (1 \=1.265
o Fnax = 3V3 "/ o m( 3)

for in the two cases, q

Let us note that for AL = 0, formula (59) gives:
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o1
AL 4 (60

This result can also be found very simply by reasoning analogous to that
of § 11,3.3.1: thrust acceleration Fmax applied in a continuous fashion should

cover the distance |Aa|/2 in the time AL/2. Whence:

_;_ - (AL) /Aa/

The corresponding characteristic velocity is:

Al =F,,, AL _2[/Asl
2 AL

The total characteristic velocity is:

AC=2AC(, = 4/A5/ with /v /= [dal _ AL

AC 4

Jea)

F
max

In Figure 15 have been plotted the lines corresponding to the values
=0, 1, 2.5, 5, 10.

Solutions corresponding to fixed values of |A1[ =

Ia, |

Agreement with the numerical results of McIntyre and Crocco remains satis- /110
factory before reaching the line TS corresponding to q = ~-1. This line can be

plotted approximately.
CONCLUSION: in the entire OTS domain and a little beyond the T3 frontier,
formula (46) reduced to its first term can be used if an error of the order of
% is admitted.

On the other hand, in the area of singular solutions, this approximate
solution is far from the numerical solution and it is necessary to have
recourse to another development.

b) Development around q = -«.

Let us posit:

?:'*37—(0“51 «T). (61)
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Carried into (32) and (33) it becomes:

AL

+ 24
2 2
’\1=A8=A= £ [—2+_‘f_'_ sin® [ rorder & |dL
Fmax _A_L Fmax 4' ’ (62)
z

_ , .
—44L +~52‘—5(é——‘r/fzzl)+order£13

AL
* 7

B=0=/ FF (_ZCaJ‘é.,;EZL str7? [ 4 order 6,3) dl = (63)

adc
2

_26sint +%’. ) (é- — -5/.2&—) +order 513 .

On the other hand: .
A = Waml _ 25y

¢
’ /c;?ax (64)

where the sign 6 signifies that the difference of the quantities envisaged for
the values Lf and L2 of Figure 12 must be taken.

Deriving e, from (63):

1

8 dsint

2
El = e oL, order &,
T Ssn2l (6%)

§(24)

and introducing it into (62) it becomes:

g’_:mz)z ,

Ae __ 461 (7-4. gL &3,

)\1 Fmax 7- _é__{_/;/‘lié_ + order 7 (66)
s(2L)

Iif € is sufficiently small, that is to say, according to (65), if sin
L2 = sin Lf (area of the solutions of the Hohmann type), it is possible to use
the following explicit formula while ignoring the terms of the order of e’
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F sin AL _sin ¢ \? ]
2 2
AL 7 (67)
A, = _Aa =_4[A/;_12] 14N _2 _° /.
Frmax 2 g_sin AL _sim 2L,
AL _
with L 212 —J
[ AL _WlAm]
272 2F,

in order to calculate the transfer corresponding to a given consumption.

When q + -, sin L2 = sin Lf and then

)\f/éa :_4(4f_12):_4 (Ac 1)
m

ax

The '"specific dilatation' is maximal (Hohmann type solutionms).

/V/=W§—§Tj"ﬂ—//—= 2. (68)

B1-IMPULSIONAL SOLUTIONS.

These correspond to L2 = Lf. Then:

J;/'nl)z
o o= lAal A _p1-41 0L _
Polern =ilaml 3, 1 dsn2L (69)
5(20)
4 cos2 AL
2l 2 =2<7_2c0/‘y2_A_L)
7- cos AL 2

a formula to be compared with that furnished by the exact calculation taking
part in (57):

/J/ca/c. :(_Z_., Ca/yZAZA)-/ZZV-; . 2(7- ZCD@Z_AZ_L),
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The curve can be gradec in values of €1t

8 cos DL cos AL
_Geos & 4 >

>~ £ =4 < (70)
! 7- cos AL SiﬂzAL
: 2
or: ‘
E,~ 4 cos AL |
AlL»> 17T
The agreement between Ivlapproximate and Ivlcalculated is good in the /112
vicinity of point Q. Then the two solutions diverge rapidly.
VICONT INUOUS THRUST'" SOLUTIONS.
These solutions correspond to L, = 0. Whence:
. AL 2
Sin&2&
2
AL 71
/) _Jha 2 1)
appro%, = T 2 |17_4
W/Am] 7_ SinAL
AL
The corresponding values of e, are
.5‘//7__‘!_'~
8.2
&~ __AlL/2 (72)
7_sin AL
Al

which permits the curve to be graduated in values of €1
Agreement with the numerical results of McIntyre and Crocco is good in the
vicinity of point R, after which the two solutions diverge rapidly.

CONCLUSION: although the solutions corresponding to fixed values of

l - [Aa[
1 F
max
example), it may reasonably be thought that in a narrow band in the vicinity
of the singular solutions QR, formula (67) can be used as a first approximation.

B have not been tabulated except for zero (IAII =1, 2.5. 5, 10 for

Case where AL >> 2mw.

In this case we have seen that |q| >> 1 with the result that it is



possible to use a development in the area of |q| = +=. Formula (66) can be
used with a limitation to the first term and with suitable study of the signif-

icance of ¢

11,3.3.2.4. Comparison with the propulsion system (Sz): W variable, P - Pmax

a) System (Slc) with continuous thrust.

In Figure 8 have been traced the variations of the reduced dilatation

V2 Proy 14mI 41

as a function of the transfer angle AL, for "contimuous thrust” solutions

(for these solutions |z| = |v|). Thus it is possible to appreciate the penalty
due to not modulating the ejection velocity W. However, contrary to the result
obtained in the case of infinitesimal rotation, the penalty is 0 for AL = 2Nw
(whole number of revolutions), because the optimal solution obtained for the
propulsion system (Sz): W variable, P = Pmax’ which consists of applying a

constant thrust tangentially, coincides with the solution obtained by the pro-

pulsion system (Sl): W = Cte, F <F

max”

The slopes at the origin of the curves are respectively: /113

systém (52): __A/EE-Z/-——I/Z \/3_ {equation (14)]

systém (‘576): %/= 1/4.

For AL = 0, the penalty is:

w2 -0/

1/2\3 (7201
v

= 13% of |z]|, therefore 26% of |[Am].
b) System (Si) with optimal (constant) ejection velocity W*.

The transfer being fixed (and in particular the transfer angle AL), L2

fixes the length of the thrust arcs. Into the hypothesis we shall place |q|=1
(OTS region of Figure 15). Optimizing the ejection velocity W with constant

PmaX power is the same as optimizing L2, i.e. seeking the maximum of:

_ _ /Al _ A - A
/T(Zz)/—m“Vl\——c (—/: 2‘[ AL)

max
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where llll is given by (45) and where Ae =1 T -
Now, g—]-5-'--is zero for:

dL2
o I _yyydre _ 2/M
¢ di, / /dtz AL
Thus
/v/= /A/\[/h AL CZ//LAZ/ Z—OZLA;/ ~ 2(7- cos zz)Vz(j_gcos L)%

In Figure 14 this condition is expressed by the very simple condition:

cotg B*=2cotg B} ox | wmE pR"] (73)

which easily furnishes the optimal length of the thrust arcs.

When the transfer angle is weak (AL ~ 0), L2 is also weak and

cotg B o colg /312_* cofg Bz

where cotg 82 is the value of ]v] relative to the bi-impulsional solution of

transfer angle AL.

From this is deduced:

co/y,Bz_g_ coly B, (= 2 coly /‘91)-

(74)
In Figure 15 the slope at the origin of the curve corresponding to the
system (SI) is therefore:
coly ﬁ*=33 X% =§— (75)
On the other hand, /114

coly B, = (DL - 2L3) colg Bo+ 21, colyBa _ p L, cotg B,
AL Al
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Thus, combined with (74),

(76)

.2=

/Y- AL,
'y

The result is that:

[ =VAY =V A = AL [7.205 _ALVZ (77)
3 AL 3V3

which, in Figure 8, furnishes the slope at the origin of the curve relative to
the system (S{).

The preceding results can be found again rapidly by a direct reasoning
based on Figure 9.

Condition (I,3 - 80) is expressed by the equality of the areas (1) and (2)
(Figure 16). Therefore 2L% = 1AL
2 32
The penalty due to not modulating the ejection velocity in this case is
no more than:

1__1/2
Alyl _2y3 3 3 0.059 or about 12% of mass
e 7 ’ consumption instead
2\/3— of 26%.

Fig. 16, Optimal Length of Maximal Thrust Arcs.
(Very Small Transfer Angle) (System S?).
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11,3.3.2.5. Singular solutions of the linearized problem. Degeneracy.

We have seen that the solutions corresponding to p, = -%3 P, = 0+, there-
fore q = -», are singular (type I bis).
As a matter of fact, since the commutation function © = ]E:I -1 is ident-

ically zero, it is impossible to determine the thrust modulus, which neverthe-
less remains tangential, with the sole application of the Maximum Principle.

However (27) and (30) are always valid:

y +—%—‘e
//\4/=A§—/=/A/=2'/ Jl
Fmax AL Fmax (78)
.._2__.La
+£2.é_[(,_
F_cost dl =0 (79) /115
Frax
..f%é —ly
+A£——Le
* F_sintLal=o. (80)
AL ’[max
- 2s L

These equations receive an interpretation analogous to that already met
in § I1,1.3.2.2.:

The singular solutions corresponding to a given value of xl = Aa/Fmax are

such that the thrust is applied tangentially (]q] = ») and modulated (F = F(L))
while respecting only the following rule:

The 'mass" |Aa|/2 is distributed on the transfer arc MOMf with the '"'linear

density" F = F(L) < F in such a way that the center of the mass is at O.

There does not exist any singular solution corresponding to the value lxll

given for a transfer angle AL less than a limit value:

AL(A,)= 77'+Lj\71_/> 7

for which the only solution corresponding to a tangential thrust is the solu-
tion of the Hohmann type.
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For AL(xl) < AL < 27w, and among the singular solutions, there can be

envisaged (Figure 17): solutions of the Hohmann type, inclined solutions of
the Hohmann type, solutions which are deduced from them by sectioning, and

finally solutions where the thrust is modulated on certain arcs.

Fig. 17. Hohmann Type Solution and Singular Solutions.

The preceding results could be extended to the case AL > 2m.

In order to remove the degeneracy, recourse must be had to a higher order
calculation which will be explained in Chapter II,4.

11,3.4. Conclusion.

The analytical study of the transfer problem between infinitely close,
co-planar circular orbits, with the transfer angle being fixed at any value,
proves to be, as expected, much more delicate for the propulsion system (Sl)

with constant ejection velocity and limited thrust than for the propulsion sys-
tem (Sz) with variable ejection velocity and limited jet power.

However, the adoption of the orbital elements a, a, B as state coordinates
greatly simplifies the calculations. In particular it is possible to construct
geometrically the optimal thrust at any point of the optimal trajectory and to
calculate consumption in a rigorous manner for the system (82) and in an approx-

imate manner for the system (Sl).
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In the case of the propulsion system (82) (variable ejection velocity,

limited jet power), the thrust is modulated in a continuous fashion along the
transfer arcs. It is antisymmetrical in relation to the axis of symmetry of
the transfer arc.

The law of thrust orientation depends only on the transfer angle. For
weak transfer angles (up to about 187°), the tangential component of the thrust
changes direction twice. In the case of a whole number of revolutions (or of
a great number of revolutions) the optimal thrust is tangential and constant.

The reduced dilatation starts from the zero value for the zero transfer
angle and after a few oscillations stabilizes at a maximal value, a value
which furthermore is attained without being exceeded in the case of a whole
number of revolutions. This value corresponds to the reduced dilatation which
would be obtained for any transfer angle if the final orbit was not obliged to
be circular.

In the case of the propulsion system (Sl) (constant ejection velocity,

limited thrust), a distinction must be made between the regular solutions and
the singular solutions which can only appear for a transfer angle greater than
180°.

The regular solutions entail an alternation of maximal thrust arcs and of
ballistic arcs, the first arc and the last arc always being propulsed arcs.
The optimal thrust is antisymmetrical in relation to the axis of symmetry of
the transfer arc. The law of thrust orientation depends not only on the trans-
fer angle but also on the relationships between the relative dilatation of the
radius of the orbit and the maximal thrust available related to Newtonian
attraction.

Since the angle of transfer and the dilatation to be achieved are fixed,
there exists a minimal value of maximal thrust available below which transfer
is impossible.

This value corresponds to the transfer where the thrust is applied contin-
uously (no ballistic arc).

When the maximal thrust available increases beyond this value, one or
several ballistic arcs appear and gradually expand, which permits the thrust
to be localized in zones where efficiency is better. Then specific dilatation
increases up to a maximal value.

If the transfer angle is less than 180°, this maximal value is lower than

2 and corresponds to a bi-impulsional solution (the propulsed arcs are reduced
to two points). The maximal thrust related to local attraction is then very
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large in regard to the relative dilatation to be achieved.

If the transfer angle is greater than 180°, the maximal value is equal
to 2 and corresponds to Hohmann type solutions (two maximal thrust arcs
symmetrical in relation to origin) for a transfer angle lower than 360°, or
of the generalized Hohmann type for a transfer angle above 360°. Thrust is
then tangential.

If the maximal thrust available still increases beyond the value corre-
sponding to this type of solution (which therefore implies that the transfer
angle is greater than 180°), the solution of the first order is no longer
unique and degenerates into an infinity of singular solutions.

The singular solutions correspond to a tangential application of thrust,
whether modulated or not. It is enough to distribute the thrust along the
transfer arc in such a way that the desired dilatation is obtained and that the
center of mass of the distribution is at the center of the orbit. These
singular solutions are particularly important because, both for them, for the
Hohmann solution and for solutions of the Hohmann and Hohmann generalized types
specific dilatation is maximal (at least in the linearized study).

Between two propulsion systems of the same power functioning in a continu-
ous fashion, consumption is obviously less for the one with an ejection
velocity which can be modulated.

The penalty in consumption due to not modulating the ejection velocity is
of the order of 26% for a continuous thrust system or of 12% for an optimal
(constant) ejection velocity system in the case of a weak transfer angle.

1,4, PLANE OPTIMAL TRANSFERS OF THE HOHMANN TYPE BETWEEN
NON-INTERSECTING DIRECT, COAXIAL, CLOSE NEAR-CIRCULAR ORBITS.

(Propulsion system (S]) with constant ejection velocity and limited thrust)

I1,4.1. INTRODUCT!ION.

In 8 1I1,3.3.2.5. on the linearized study of optimal transfers between
close, coplanar, circular orbits, when the transfer angle is fixed and for
propulsion systems (Sl), we have shown the existence of solutions which lead

to a propulsive consumption equal (on the order under consideration) to that
of Hohmann's bi-impulsional solution, although they entail continuous thrust

arcs.

The higher order study of these solutions has been made by McIntyre and
Crocco [42, 44] by applying Pontryagin's Maximum Principle, which leads to
rather complex calculations. Here we shall use a direct analytical method and
the results obtained will not only concern the cases of plane transfers between
close, coplanar, circular orbits, but also generally that of plane transfers
between non-intersecting, direct, coaxial, close, near-circular orbits.
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11,4.2. REVIEW OF THE RESULTS OF THE LINEARIZED STUDY.

The osculating orbit (0) is defined by its '"perigee vector" g, directed
toward the perigee P and of length e = order e, with the components:

A= 05

Z
. (1)
B=esinw
on fixed axes Ox and 8; (Figure 1) and by the quantity: /118
é?=\/ éé (b = semi-minor axis = avl - e2). (2)
Fig. 1. Perigee Vector.

The utilization of B, instead of semi-major axis a, in this study is
justified by the fact that the variation dB of B requires a characteristic
velocity dC equal to -dB with a relative error of the second order only in
relationship to:

M= max (6,;0): infinitely small principal. (3)

The application of the thrust acceleration ?Vin the direction forming the
angle ¥ = 0 with the local horizontal produces these variations:
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% = 2 o5 [ rorder M (4)

ac
dB _ 25/n L +oxder M (5)
dc
a8__ 71,1 _i.:/'/??fz_.:?_?f 7+ cos2v)+ order M3 (6)
ac +2(¢ > ) 5 ( )

which are easily deduced from the traditional formulae of perturbations and
from the definition of the characteristic velocity C:

¢ -
c=/ yat  (y=171) )

¢

0

which takes the place of '"consumption" for propulsion systems with constant
ejection velocity W or a known function of the mass m of the mobile.

v is the true anomaly, L = w + v the straight ascent.

The present study applies to propulsion systems with limited acceleration

(0 <y < Ynax fixed). It also extends without modification (except where

otherwise indicated) to propulsion systems with limited thrust (F < Fmax fixed)

if the ejection velocity W is of the order of the nominal velocity in orbit v, /119
which assures that the relative mass variation is of the order =. Then it is
enough, supposing that the unity of mass is equal to the initial mass m, of

the mobile, to replace Yinax by Fmax in the calculations.

Taking B instead of C as an independent variable in equations (4), (5) and
(6), we get:

ax _ 2 cos L +order M

~-dF (8)
9B _ 2sin [ rorder M

-dB (9)

a¢ _ _Z_ _g_;/'/;z/ijez Jreosty +order/‘73
. N 8
and by integration:  , =_/ f2cost (~ 0’6’)+ order /7 *

4

. ) (11)
A'B_f/ £ 2 sinL (-~ dB)+ order M
8, (12)
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AC=_AB + orderpm?3, (13)

Let us then define the law of variation in optimal thrust magnitude in the
following manner:

1. we distribute on arc AL = At (1 + order ¢) (At fixed = duration of transfer)
of the circle (0) of a unit radius, the fictitious, total, fixed '"mass"
-AB > 0, with the distribution function -[B(L) - Bp] so that the center of

gravity of this distribution is situated at the fixed point G ,

Ax
1 = A
G
G ‘225 (14)
Y -2AB

and that the linear density :g%-= yois <y oo

G is necessarily inside the circle (0), and therefore |K€| 5_2|AB|. There-
fore the initial orbit and the final orbit are not intersecting.

2. the law of variation of thrust magnitude is chosen in such a way that the
characteristic velocity of consumption from the departure to position L is
exactly equal to the distribution function defined above (at approximately the

order MS), that is to say:
C(L)=~[8(L)-8)] +order M.

This thrust law verifies equations (11), (12) and (13), that is to say
it achieves transfer at approximately the order M2 and it is possible to adjust
the transfer angle AL so that the duration is equal to At.

Consumption relative to any two of these solutions obtained by choosing
distributions of different masses,but achieving the same transfer at approxi-

mately the order M2,differs only by the order of M3 as equation (13) shows. If

only the terms of the first order in M are retained, the solutions are equiva-

lent. The great freedom which then exists in general in the choice of the
distribution B(L) is expressed by a degeneracy of the solution of the order M. /120

If we insert into the terms of order M2 of equation (10) the values of
e and v relating to the solution of order M, we commit a relative error of the

order of M, therefore an absolute error of order Ms, which is negligible.

Now, the values of e and v of the solution of order M do not depend on the

angle ¢. Therefore,the term in e2(1 + coszv) of equation (10) is independent
of ¢ and we see that the value of y, which minimizes the consumption AC for a
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fixed variation AB, is:

gu:_g_ sin v +order £3/2, (15)

A primary consequence is that ¢ = order e, therefore M = £ and the pre-
ceding study of the order M coincides with the linearized study of the problem.

(§ 11,3.3.2.5.).

We now propose here, through a study of orders higher than the first, to
remove the indetermination by selecting the optimal solutions from among the
degenerated solutions of the linearized problem.

I1,4.3. HIGHER ORDER STUDY.

Equation (15) shows that the optimal thrust must be applied forward,
practically following the interior bisectrix of the angle YMV between the local

horizontal X and the tangent to the trajectory w (Figure 1).
Having made this choice, integration of (10) furnishes:

%

AC:-—AB_.g_ e?(7+cos?y)(-dB)+order £ (16)

%

The integral occurring in the second member is written:

oS arftecostu)oos)d [[2 o2 )7 d
‘=/‘ e?(1+cos*u)(- )=§/[:2 *(6')]5 (17)
5,

<)

where t is the unitary vector of the tangent to the locus (L) of the extremity
E of the perigee vector e and s is the curvilinear abscissa on this locus
. . . . > 3>
(Figure 2). The straight ascent L is nothing but the angle L = (Ox, Et), and
> > .
the true anomaly the angle v = (OE, Et). The transfer angle AL is the angle

_)..+
swept by the tangent Et. Let us note that it is enough for each of these
elements to be defined with a relative precision of the order e.

The problem comes down to determining the curve (L) of fixed length:

szdsz_ 2085 ]A2)=E, Epx 0
&)

(18)

which renders the integral I maximal.

142

/121



Without restricting the
generality of the study, we can
suppose that the acceleration is
equal to the maximal accelera-
tion Ynax °F is zero, any possi-

ble intermediate acceleration
phase (0 < vy < Ymax) being

theoretically able to be consid-
ered as a rapid succession of
maximal thrust arcs and ballis-
tic arcs.

The integration of (3) and
(4) on a maximal acceleration
arc furnishes:

Fig. 2. Locus of the Extremity of the

Peri Vector. . .
erigee X = + 2 frmax (sinl ~sin L;) +oxder &7

£ (19)
/9:/8[-_23’”7“ (cos [ — cos £; ) *order e?

Therefore the point E describes, at approximately order 82, an arc of

circle (sk) with a radius p = 2Ymax (Figure 3). Therefore the problem consists

n
in adjusting these "festoons" so that their total length ,%. = S is fixed and

k=1

the integral I is minimal.

LJnJ I1,4.3.1. tmpulsional Solutions
4k)
If the maximal acceleration

Y available is infinite, the
max

@n) festoons are reduced to segments
(radius p = »). The straight
ascent L is constant when the
thrust is applied. Therefore
there is a succession of im-
pulses (Figure 4). The general
impulsional case ( any points

EO and Ef.) has been studied by

¥ 033) Marchal [15]. Here we shall
E, limit ourselves to the case of
(Jz) transfers between direct coaxial

Qlﬂ (:2:) orbits. The points O, E, and Eg

are then aligned and O is outside

Fig. 3. Succession of Maximal Acceleration the segment EOEf(Flgure 5.

Arcs and Ballistic Arcs.
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I=1
2

0

Fig. 4. Impulsional Case.

O—o6—0- =
0 E.

Fig. 5. Direct Coaxial Orbits.

all

Fig.o.Non-intersecting,Uirect Coaxial urbits.

Fig. 7.
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We still have: /122

ez(7+c‘052?/)d5 (»/2" O’J'zjl. (20)

() ()

Let us suppose that we have
found the route (LH) of length

S which maximizes I' and that
under these conditions

cos v = 1. (LH) then maximizes
I. Now:
ese, +s
(21)
ege +S-5
(22)
(Figure 6)

I' is therefore maximal
when the function e(s) is repre-
sented by the line ABC (Figure 7)
i.e. when (LH) is formed of two

segments EOM and MEf borne by
OEf’ with M
being the point of (LH) further-

the straight line OE

est removed from the origin O
(Figure 8).

Thus we get cos v = 1,
therefore,I = I' is maximal.

The optimal solution con- /123
sists of applying an impulse to
the perigee (v = 0) of the
initial orbit and an impulse to
the apogee (v = w) of the final
orbit.

(Hohmann transfer) (Figure 9).

If there are several revo-
lutions available, it is possi-

ble to break the segments EOM

and MEf into sub-segments:



180° EE , E.E,, EM, ME_, E_E_, for
N Er 071° “172° *27 3 T3
D o R i A example (Figure 10), i.e. to
0 E; LQZ) M fraction the preceding impulses

(Figure 11); then we can

describe a whole number n, of

times each intermediate orbit
is represented by the point E

[The tangent to (LH) and E

Fig. 8. Bi-impulsional Transfer.

X
k

sweeps an angle of n, 360°].

k
In any case the impulses
are first applied to the perigee,
then to the apogee. There is
no alternation [(LH) has only

i,)

one point of retrogression: in
M]}. These traditional results
particularly take part in [11].

i1,4.3.2.Limited Acceleration /124
Solutions.

Since the maximal accelera-

Fig. 9. Bi~impulsiocnal Transfer. tion Ymax 5 ™ longer infinite,

ni

it is impossible to have cos v

= 1 along the route (L) composed of festoons. Equation (16) and the inequality
(20) then shows that for the same transfer consumption AC,relative to a limited
acceleration solution, even optimal, is greater than the consumption ACH rela-

tive to Hohmann's solution.
360° 180°

E./JE
5 R Y

360° Ly 360°

Fig. 10. Multi-impulsional Transfer.

11,4.3.2.1. Particular Case of Two Maximal Acceleration Arcs for a Transfer
Between Close Circular Orbits.

The integral I in this case becomes:

]:%/e’ﬂ*”“ v)}og;e_” =P3(% @ 25in go-ﬂf_se) (23)
(&)
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RY Az

where ¢ is the angle at the center of the festoons

(Figure 12). ( " 2p _%)

The relative separation of the characteristic frequencies between the
solution with two thrust arcs and Hohmann's bi-impulsional solution is,
therefore, for the same transfer:

AC-ACy _ 3As?2| 1 3 ; : -
S H — £ l}? _ _)%ﬂ_;_x_) (20 @_16 sinp_ 25/ 2;0):, (7+order €)

a formula already found by McIntyre [42] which is also written:

AC-ACy — A2 2(5-3~/0¢‘8_Z”%¢'f/b2¢) (7+order ¢)

A¢, 728 @7 (24)
and if ¢ is small:
_.__AC‘AC?/:.Aa.ZSO2 7 max (&, @2
Ac, 728 l: forder max(¢. &%) (25)

Fig. 11. Multi-impulsional Transfer. Fig.12.Two Maximal Acceleration Arcs.

The supplement of characteristic velocity referring to Hohmann's solution

is therefore of the order eswz, and this is true no matter what ¢ is, i.e.
the importance of the two thrust arcs (Figure 13).
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11,4.3.2.2. Any Number of Arcs.
The condition cos v = 1 being

characteristic of Hohmann's solution
achieving the optimum, it is neces-
sary to expect that the optimal
solution with limited acceleration
will be such that cos v = 1, at
least if the maximal acceleration
is large enough for the impaired
transfer duration, which we shall
presume.

This is equivalent to an
extension of the thrust arcs around
the impulsional points corresponding
to maximal "efficiency". This is
really the case for transfer between
close circles using two propulsed
Fig. 13. Two Maximal Acceleration Arcs. arcs analyzed in the preceding
paragraph. The integral I, is

written again, for sin v = 0:

j=zgjfez(7*‘05z”)éZ§;-f/rez(7*:ﬂg;ig;+order5”76”)/0%/ (26)
(=)

(<)
or by integration:

I=- le,) s Ce_/)_j_ 4 < e: rorder € S U

where ey is the maximal eccentricity found during transfer.

Let us suppose that the perigee festoons (that is to say corresponding to

TN
the line EOM) have fixed lengths Sk (Figure 14). The lengths Ck of the
corfesponding cords are fixed. I is maximal for maximal €y i.e. when the
cords are aligned on the straight line OEOEf without the perigee line (Lp)

showing any retrogression.

Now let us suppose that under this alignment hypothesis only the total
length:

P (28)
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of the perigee festoons is fixed. Then:

”

P Tp 3
G -Co= 2 =P Z (gok-__ +order ¢ ) (29)

7

‘P
. . 3 . . . .
is maximum when k;; A is minimum, that is to say for equal perigee festoons

Wy =¥ k= 1.2 ..., n)

Fig. 14. Succession of Maximal Acceleration Arcs and Ballistic Arcs.
Analogous reasoning would demonstrate the equality of the apogee festoons
(wk = wA; k = np + 1, ..., n) when the total length SA of the apogee festoons

is fixed.

If at the present time only the total length S = Sp * Sy of the path (I)

is fixed, the perigee festoons and the apogee festoons must still be respec-
tively equal to each other (Figures 15and 16). In fact, if the perigee fes-
toons, as an example, were not equal to each other, it would be possible to

obtain the same value of ey with a perigee length Sé < Sp, therefore with a

total length S' = Sé 8, <8 = Sp + S, and the solution would not be optimal.
A more precise calculation [taking into consideration the term e; sin4 v
neglected in (27)1 shows that the alignment of the cords is only approximately /126

realized (the cords of the festoons form angles of the order of wz with the
straight line OE ) and that the relative dlfferences between the length of

the perigee or apogee festoons are of the order of w The extra precision is

useless in this study if wﬁ < order e.

Fig. 15. Optimal Solution.

The numbers np, n, and the respective magnitudes of the perigee and

apogee festoons still have to be determined, i.e. to make:
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T T e, S

=f'lP

n Pr n Pa (30)
sin 2P L n, sin A
2 A 2
maximal, with the constraints:
nH. +h =n.—_-E(N+:z)= fixed integer (&2D)]
P A 2

n = number of thrust arcs, E = integral part.

N = number of revolutions authorized by the transfer period.

(As long as N << Zgz' , which is practically always the case, this is equivalent

to fixing the duration At of the transfer or the number of revolutions N).

-9 - /A fixed 32
A, @, +n, QDA_F_/L ixe (32)
2n,sin Pe _2n, sin Pa . &f "% _Ade_ A fixed (33)
2 P P
Ry, iy = integers. (34)
In a first approximation we
shall replace sin lg—by % in (33):
we then derive:
2hn, =N +8=2F 20 (35)
2n, @ =N-8=2650 (36)
J=24(N_2J,)=L2 1 G0 oL + ) (37
ﬂ2 nz
I A
If the condition (34) is not
Fig. 16. Optimal Solution. considered, J is minimum for np = nI’;,
n, = HK’ not necessarily integers,

and wA’ = ‘Pp = y* (Figure 17). In consideration of (34), it is necessary to

choose between the values n_ = E(n*) and n_ = E(n* +1) with n, = n - n_, which
p p p b A P
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makes J minimal. In general there is no ambiguity. Let us note that if
- = —A 3 -*—*—n
Ae = 0, F=G= 5» Curves Jp and JA are symmetrical, and therefore: np =ng = 5.

If n = 2r is an even number, there is only one optimal solution offering r
thrust arcs at perigee and r thrust arcs at perigee.

JA

Ifn=2r + 1 is an odd
number, ambiguity exists,
because J assumes the same
value for the solution where
the supplementary thrust arc
takes place at perigee and
the solution where it takes
place at apogee.

The ambiguity can only
be removed by a calculation
of higher orders.

A—_—_;_--—-- —:::'_‘ ——————
o Then we get n_ = r + 1
and n, = r. p
ny A
5@-‘2_#“?77‘/—_5 a*,;;’zw,_%“ ***** (1,4.3.2.3. Thrust Arc Periods
of Duration.
Fig. 17.

First of all we shall
suppose that the propulsion system has limited acceleration (0 < vy 5-Ymax)'

SCPk

Let 8t _, = , the thrust arc period at perigee number k.
pk Tnax
chk is the corresponding consumed characteristic velocity:
38
OCo, =68, (7+ orderé") (38)
now
B-_-/D'7/z(7+ e)-—’/z(7_zz}’/4___p"/z(7_£ +3’—2+order ej
: 278 (59)
where P is the distance from the center of attraction to perigee.
Therefore, for a thrust arc to the perigee:
661 p~725p 7re) 727 2 4/‘*+P'1/2(_é;@_ _,_Eie. prder ZJZ).

In order to simplify the calculations, we shall presume that the thrust
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arcs are short. The perturbation formula of the distance from perigee then
shows that:

g—g = order wz (¢ = angle at the festoon center) (4D

that is to say that the perigee shifts very little, therefore:

Jﬁ’:,g"/z__z__" e§¢){7+ordermax[ (A’ );02]} (42)

- 1/2

rmax (Je,a/« ePkJeP/«) {7+ordermax[ (__ ]} )

e, - €
All variations éepk are equal to Se =—M—n——0 , the length of the perigee

and

festoon cords. epk is the mean value of e for perigee arc number k.

st =% (en=2) (7 € nean on wre K)[7 order max 62’<k“ L);oz )
Pk 2/7P rmgx 2 2

-y k- L
Z/eM— %) | 7.2 ( ) (e ~e,) 7+ order max [52;(/\’-— L)Gpﬂ
— 2

2/7P ) S 2 2/7

(44)

There would be a similar demonstration for the apogee arcs:

S VIR A A
2

/{"* nA ()/max
-/z 45
- k.,L.__ _ (45)
(ey - ¢) 7 % 4. ( )(e %) 7+ order max 62,(ﬂ-/(’+_7)(02
ZnA JSomox 2 2n, 2

Therefore the thrust arcs periods decrease in arithmetical progression,

. 1/2

. . -2 - 2 2
in the ratio - % (_""" e,,) for the perigee arcs and - Ag (—‘-z"’ = g"’)
max 2np I max 2n

for the apogee arcs.

It is easy to verify that the ratio:
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”

) z LY
_ sum of the apogee arcs periods _ 4=/, *7 46
" sum of the perigee arc periods @ % (46)
X d¢

in the case of transfer between circular orbits (eo = ep = 0) is equal to:

= 7—%.2 (47)
AV
AVP

If it is a propulsion system with limited thrust (F f-Fmax) and no longer

i.e. the ratio of Hohmann impulses.

with limited acceleration, the progressive relaxation of the mobile permits
a supplementary shortening of the thrust arc period. The period of arc number
k is no longer §&t, but 6t£ = 6tk + 6(6tk) with:

k
P_ /0_1/2 €pp % ~ . Cpr~%
w 2l 2W
£ - 4 5, _Ba -
J/;J.;‘k) =_——_—_/77/”\,7 ma =_'Mk/_=A7_'= _ P 7z e”—eo . ‘4—’/2 cAk—eM ~ (48)
* ° w 2w 2
epre, - 2e,
2w
L

where W is the ejection velocity and ey is the mean value of e for the
festoon k.

Whence:
_/?k &) e (k_.;) , i o,
; _ o Nz - A 7+ m L (A-L.
oy = > F’}m: 7. 20 27 (¢~ ¢e,) (/+ W) order max | & (/r 2)q0 (49)

and

A . S ‘
Jgizw 7. Zr’ ( ) )(e -e,) (7+ ) e, ¢ - 2e,
2/7.4 ()/max oW

X{ 7+ order max |2, (n—k +§) go_z}

Let us note that (49) and (50) are respectively reduced to (44) and (45)
when W is infinite.

(50)
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11,4.3.2.4, Angles at the Center of the Thrust Arcs.

The angle 6ka, swept by the vector radius during the propulsed phase

number k at perigee, is connected to the period thk of this phase by:

51 /;) -3/2( e { [, ’
(\ =[— =/03 T+ Pk ) 7 rorder: max |€°, k—-——)<Pﬂ (s1)
Jtl%(fz 2 ( 2

Fk

(h = kinetic moment),
from which, by using equation (49):

-2
6L _ % (en—25) _ A% 2 7 2
Pk AoZﬂP . 7 W 7+ order max | &°, (k_ 5 @ (52)

Likewise, for the thrust arcs at apogee: /130

-2
5Ly, =2t (ern=%) 7+?An"L§ff_f){7+order max ez,é-k +1) P (s3)
2014 fomax 2w 2

The angles GLk therefore decrease with arithmetical progression in the
ratio:

-2
f en-e,

» Jmaxw ZnP

2
) for the perigee arcs and

2

-2
A e, -«
R 4 d f) for the apogee arcs.
2 maxWt 2n,

In the case of a propulsion system with limited acceleration, it is
sufficient to make W = « in the preceding formulae. The angles at the center
of the thrust arcs at perigee and at apogee are respectively equal among each

other, at approximately the order max (ezw, n ws).

For example, for a transfer with a large even number of thrust arcs
n = 2r, between circular orbits, if th is the duration of the first propulsed
arc and 6L1 is the corresponding angle to the center, the duration of the last

perigee arc is 6'% = 6t1 (1 - %39 and the corresponding angle GLr = 8L,. The

AL

period of the first apogee arc is Gtr +1° Gtr and the corresponding angle

GLr + 1" 6L1 (1 - 2p6a). Finally the duration of the last apogee arc is:
Aa . .

th = 6t1 (1 - E—J and the corresponding angle is dLn —6Lr ‘1
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11,4.3.3. Loss in Ratio to the Hohmann Solution in the Circular Case.

Formula (24) enumerates the loss due to the extension of the thrust on
two maximal acceleration arcs for a transfer between close circles, in a ratio
to the bi-impulsional selution of Hohmann.

We propose to establish a more general formula, although less precise, in
the case of any number of arcs.

The characteristic velocity of an optimal solution between circles is
given by:

3
AC:—AB— —gﬂ'*order max (64, 63¢4)

(54)
where
. QP . @
e . =2n sin XE = 2n, psin TA
M P P 2 A P 2 (55)
with
=2 Ypox= 24¢C o Az c
p=y p Pp * 7y Py Np Pt Ny Py (50
whence
3 3
_Aa(7 7 e Pt 7% Pa, g <p3).
e,=29(7,_ : +order
"o 24 n p.tn, o, (57)
Now, (55) shows that
n, ¢=n, @7+ order ¢?)
therefore
_ D33 (7, ¥at9f ‘
AC_..-— AB_ 32 (7’/' F76‘ *Order ¢ (58)
whence /131
AC-AC, Aaz(§0;+¢A2)[7+ 2:]
= . order max (¢, P
AC 708 ( ) (59)

for n = 2, we again find (25).
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11,4, 4, NEAR-OPTIMAL SOLUTIONS.

Let us take up equation (10) again:

2 2 2 3
ac 7 T fw_ e sinv)_3¢ (7+co5s°v)+order M°. (60)
7 *z(g” 2 / il )

For a Hohmann solution between circular orbits, (with a possible fragmen-
tation of impulses) ¢ = 0 and sin v = 0, therefore

61
QI£:7_;3_QZ+ order &7 (61)
-d8
and by integration:
e’ 3 NAa? 3
AC_ 7. %1 + orderé=1- #order € -
~AB 4 16
(62)
Now suppose that the orientation of the thrust is only restricted to
/(/)_gsin?f/z/cps/gge V7 costv (63)

where wB is the angle of the thrust with the bisectrix of the local horizontal

and the tangent.

Then the most unfavorable solution (i.e. leading to maximal consumption
AC, AB being given) corresponds to e = 0 (spiral) and:

dC _ 7 sorder M3 (64)
—-dB
or, by integration:
AC _ 7+ order M’
-AB (65)

Therefore, for every solution where the thrust orientation satisfies (63),
consumption AC differs Iittle from the Hohmann consumption.

a6, < AC <46, (7 A/z‘"

)' (66)

155



This is particularly true if the angle leIof the thrust with the
bisectrix defined above is less than mﬁ7%;-¢V7+coszy=vg-z=v%-x

(maximum angle between the tangent and the horizontal obtained at the peak of
the minor axis).

11,4.5. CONCLUSION.

Plane transfers of limited but sufficient duration between non-intersect-
ing, direct, coaxial, near-circular, close orbits are achieved in an economic
way by using Hohmann's bi-impulsional solution, if the propulsive thrust is
not limited.

In the opposite case, they consist of a succession of maximal thrust arcs
with a slowly decreasing period, first at perigee and then at apogee. The
optimal thrust is practically applied according to the bisectrix of the angle
formed by the local horizontal and the tangent to the trajectory.

The angles at the center of the perigee and apogee arcs are respectively
equal among each other if the ejection velocity is large compared with the
orbiting velocity, and otherwise they slowly decrease.

The difference between the characteristic velocity of such a solution and
the characteristic velocity of Hohmann's solution for the same transfer is of
the third order in respect to the size of the transfer, even for relatively
long thrust arcs. This explains the degeneracy determined in the linearized
study of such solutions.

I1,5. OPTIMAL IMPULSE TRANSFERS BETWEEN CLOSE NEAR-CIRCULAR ORBITS,
COPLANAR OR NON-COPLANAR.

I1,5.1. INTRODUCTION.

The analytical study of optimal transfers between near-circular (e = 0),
Keplerian, near orbits, coplanar or not, is particularly important because the
orbits found in practice often have a weak eccentricity and the problem of
slightly modifying them 1s frequently met.

Such a transfer can be defined (Figure 1) by the vector Z?, rotation of
the plane of the orbit, the variation nglan of the projection of the perigee
vector e onto the plane of the nominal orbit (0) and finally the relative
"dilatation'" Aa/a of the semi-major axis.

If the eccentricity e of the nominal orbit is of the order < e (= the
size of the transfer), i.e. for a transfer between near-circles proper, we have
seen that it is the same as supposing it to be zero in the linearized study.

The angle § between the major axis 0x of the nominal orbit (0) and the
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node line (support for ZT) does not then occur in the calculations and the
transfer can be defined by four scalar parameters instead of five. These four
parameters are:

rotation Aj, the component Ae// of Re parallel to Z?, the component Ae

of e perpendicular to Z} and finally '"'relative dilatation' Aa/a of the
semi-major axis.

4 On the other hand, if
* the eccentricity of the
nominal orbit is of the
order > e, even though
small compared with unity,
i.e. in the case of trans-
fer between elliptical
orbits with weak eccentri-
eity, angle § occurs in
the calculations. Then the
transfer is defined by
five parameters.

These two cases will
be envisaged in succession.

(Except in degenerated
cases) we shall only be
concerned with the <mpul-
stonal solutions with
refer to propulsion systems
of the type (Sl). These

solutions appear when

Fig. 1. Notations.

/\z—g.__{(1
AL Fpax

where AL is the transfer angle and Fmax is the maximal thrust. If the propul-
sive is capable of furnishing finite impulses (Fmax >> local attraction), we

shall also suppose that the transfer angle AL is large enough to make it pos-
sible to use the solution obtained in the calculations by making the hypothesis
of the indifferent transfer angle. Stated otherwise the transfer arc MOMf
should contain the points where the impulses obtained in this hypothesis (one
revolution is enough in every case) are applied.

I1,5.2. TRANSFERS BETWEEN NEAR-CIRCULAR ORBITS (e < order & << 1).

This problem has been studied parallelly by Gobetz, Washington and
Edelbaum [48 - 49].
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11,5.2.1. Optimal Thrust.

11,5.2.1.1. Symmetries.

Since linearization is made around a circular nominal orbit (0), the

>> . . .
choice of the axis of reference Ox is arbritrary. Since this choice was made
best in the study under consideration (Figure 1), the transfer is defined by
the variations -An and A%, characterizing the rotation Aj, Ao and AR character-

izing the variation %e and finally Aa.

A thrust acceleration ? in the difrection B(X,Y,Z) at point M of direct
ascent L during the time dt, produces the variation:
[ dFE=sinl Z )y dt

0h=-cos [ Z)dt

{ de=2Y iyt )
0= (Xsinl+ 2 cos!l)¥d¢

L dp=(-Xcos [+ 2Y sinL))dt

. . . e
In this study of symmetries, let us take the axis of reference Ox accord-

ing to the node line, support for the vector 13. da and dB then represent
respectively de// and dgL.

Instead of applying the thrust acceleration (y; X, Y, Z) at point of
direct ascent L during the time dt, if it is applied at the diametrically

opposite point, direct ascent L + w, da is unchanged, while 3? and de change /134
direction; therefore the total result is that Aa is unchanged, while K? changes
direction, but Ae// and Ael-are unchanged because Te also changes direction.
Likewise, if instead of applying thrust acceleration (y; X, Y, Z) at point
L for the time dt, we apply acceleration (y; -X, -Y, -Z) to the point L + m,
da changes sign , while Z? and de are unchanged; therefore the total result is
that Aa changes sign, while Z? and Zg, therefore Aj, Ae// and Aei_are unchanged.
If instead of applying the thrust acceleration (y; X, Y, Z) for time dt
at point L, we apply acceleration (y; -X, Y, -Z) at point m - L (symmetrical
to the first by relationship to 3?), dn, da and dB are unchanged, while d¢ and
de,, change sign; therefore the total result is that Z?'is unchanged (because
An = Zdn = -AJ] is unchanged and Af = 233 = 0 remains zero), Aa and Ae, are

unchanged while Ae// changes sign.

Finally, if instead of applying thrust acceleration (y; X, Y, Z) for time
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dt at point L, we apply acceleration (y; -X, Y, Z) at point -L (symmetrical
to the first by the relationship to 6;), dn, da, de// are unchanged, while

d¢ and de;| change signs; therefore the total result is that Z? is unchanged
(because Zﬁ = Zgﬁ = —Z? is unchanged and ZE =Z§Z = 0 remains zero), Aa and Ae//

are unchanged, while Ae, changes sign.

These results are summed up in the table below.
Aé.,,,AeJ_)A‘/',Aa L X Y
=L | -X M
~der =L | X Y | Z
Ay |l XY
e el | Xy | L

| ~dey

Thus ,changing the sign of only one of the four transfer parameters can be

realized, at the equal cost of AC = ftﬁ vdt, by modifying the position L from
the point of thrust application and from the direction D of thrust.

Only the moduli [Ae//l, ]AgL]/ |aj], |Aa| of the variations thus take
place in the results about the type of solution to be used and about the acces-
sible domain.

11,5.2.1.2. Efficiency Curve.

The not-necessarily zero components of the kinematic adjoint E are Pg’

P> Pas Py Py
4

In § I,3.2.4. we saw that, in the case of circular nominal orbit, the
efficiency curve (P) is an ellipse (Figure 1,3 - 6), a section of the ellipti-
cal cylinder (o) [of generatrices parallel to the axis MZ and of base ellipse
(P) centered in w (X =0, Y = Zpa,,Z = 0) of major axis w (a(p) = 2pe,

1

b(P) = pe)] and of plane (n) passing through w.

Impulsional solutions of an indifferent period correspond to an ellipse(P)

inside the sphere (£) with center ¥ and radius 1 and touehing this sphere
in one or two (or an infinity of) points. Thus each point of contact furnishes

a point of application M(L) and a direction B = P of optimal thrust, this
thrust being able to be applied once (one impulse) or several times durine
successive resolutions (fragmentation of impulse).

159



A necessary condition to assure the above-mentioned contact is for
ellipse (P) to be entirely within (Z) or, if need be, tangent to (Z).

The sphere (S) enclosing the major circle (C) of (P) as the principal /135
circle (Figure 2) is itself entirely inside (Z) or, if need be, tangent to (Z),
or even coincident with (£). The points of contact of P corresponding to the
impulses on (L) are therefore outside (S) or, if necessary, on (S) and there-

fore, in the dihedron, with crest W , with faces (w+) and (7 ) containing the

circles (c+) and (c’), sections of the sphere (S) through the cylinder (o).

z’% Az

@)

N4

o

Fig. 2. Useful Spatial Angle.

>
An optimal impulse, directed according to D = #P is therefore contained

in one of the two dihedrons of 60° formed by the planes (n+) and (v ) forming
angles of +30° with the local horizontal plane X = 0. We come across a prop-
erty of the "useful spatial angle'" studied by C. Marchal [12].

In § 4 of Appendix 13 it is shown that every optimal mono-impulsional
solution (a single impulse per revolution) can be considered in two different
fashions as the limit of a bi-impulsional solution when one of the two impulses
tends toward zero. Therefore we can limit ourselves to the multi-impulsional
case.

11,5.2.1.3. The Four Types of Linearized Solutions.
(The demonstrations appear in Appendix 13).

According to the expression:
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max (Aaz, Ae?, Act + Ae? +_\/2_j_/Aj//A e_L/_ AJ'Z):

As? I
AG; T (3)
Nef + A 1V_‘§=/Aj//A¢_L/- Aff I

the optimal solution belongs to one of the following three fundamental types
(Figure 3):

Type | (bi-impulsional).

If w is not in ¥ (pa # 0), the ellipse (P) centered in w on MY cannot be
bi-tangent to () at two points P’ and P’’ unless its plane (n) passes through

N (EZ and B: colinear).

The two impulses I'AC and I''AC are applied at points M'(L') and /137
M''(L'' = -L'), symmetrical in relation to the axis 6x forming angle -8 with

the node line, the support of the rotation vector Z?.
tg$ is the root of the largest modulus of the second degree equation:

Ae, Beoy b0 (e, el _Aa"Aj*)De, tgd_Ne, (De, - Da")=0

(4)
and
_7\<fasl’=%7mfa°\<+7 (5)
e//

eI I"=Bey Sinl 47
Ao sind (6)
X'——X”—'/Ae/j_daz)fﬂf a‘;Ae,,Ae_L.s‘/'nJ (7)

S Ne, AC sin L’
7os_zn. 18] sind

AC sinl’ (9)

(This presumes that the impulse I'AC corresponds to sin L' > 0).
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Fig. 3. Optimal Solutions.
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If at the same time P, = 0§p = EE-(ea = *1),the ellipse (P) is reduced

a 2
at its center w on sphere (%). We obtain the singular plane case of type
I bis already pointed out in § 1,3.2.6.

The thrust is tangential. There is degeneracy of the linearized solution,
for in the first order every point of the orbit can be suitable for applying
thrust. Taking up again the direct reasoning from §I1I,3.3.2.5, we see that
any degenerate solution at all is obtained by distributing on the circle (0)

with a total fictitious "mass" AC = |Aa|/2, with a linear density F(L) < Frax?

so that the center of gravity of this distribution is in G, such that:

06 = Zﬁﬁ. (10)
3

If |pe| < |Aa|, this can always be achieved, particularly with the help
of two impulses [G inside of (0J] or with a single impulse [G on (0)] (Figure 4).

In § I1,5.3.1. we shall see
that such a first order degeneracy
does nmnot appear if linearization
is made around a nominal orbit of
weak eccentricity (e << e << 1) and
that the optimal linearized solu-
tions are then mono- or bi-, or
sometimes even tri-, impulsional.

Type Il (bi-impulsional, nodal). /138

If wis in M(pa = 0) and 1if

ellipse (P) is not bi-tangent to
) (pe # 1/2), the points of

contact P’ and P'’ of (P) and of

Fig. 4. Type | bis. Bi-Impulsional (Z)correspond to two points M’ and
Solutions. M'' diametrically opposed on (0)
(L' = L' + 7).

The two impulses I'AC and I''AC are applied at the nodes with:

I T A9 <47 (11)
e//
X Y7 Aey In ?he mobile axes, the two (12)
ac optimal impulse directions

are opposed. In their fixed
axes they are symmetrical in (13)

Y'=_Y”=§%_“;§L relation to the plane of the
orbit. [continued]
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[Cont. from previous page] .
Z'=~Z"=%‘d (14)

Type 11l (singular, tri-dimensional).

If w is in M(pa = 0) and if ellipse (P) is bi-tangent to (I) (pe =1/2),
ellipse (P) must necessarily coincide with one of the major circles (C+) or
(C7) of the sphere (I), intersection of the sphere (2) and of the cylinder (o)
situated in the planes (ﬂ+) or (n ) going through MY and forming angles of #30°
with the local horizontal plane X = O.

Then the vectors BZ and B; are colinear and such that:
- "
p, =2 VJ3 pe- (15)

We again find the singular solution of type III already pointed out in
§ 1,3.2.6. There is first order degeneracy, since every point of the orbit
can theoretically be suitable for applying thrust. Optimal thrust is contained

in one of the planes (n+) or (v ) and its direction is really determined as a
function of the position.
Taking the vector P, as the origin axis Ox:

r

X =sinl
2
D3 Y= cos L (16)
Z=2V3 sint
L 2

The application of the thrust F(L), on arc dL surrounding point M(L) of

orbit (0) and in the optimal direction 3, produces the variations:
( c/g::x/?__?;/nn F(L)dl

dp= :_2@ sinl cos L F(L)dL (17)

da=2cos ! F(L)dl

[cont. on next page]
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[cont. from previous page]

OQY=(<2~ZZ.VHZL)AF(Z)0“
2
. (17)
d,e=_2aj’_;/n L cosl F(L)jdL
We notice that:
det V3 d7=de V3 dj = 24c. (18)
Or, by integration:
DAe+ V3 AZ=2esV3 4] = 24C (19)

where Z}l is deduced from K} by the rotation of axis 0z and of angle +m/2 and
where the consumption vector AC has AC as its length and is directed according
to Ox (i.e. EZ), which fixed the direction of reference Ox as a function of

transfer elements.

The transfers of type III corresponding to a fixed vector ZE, therefore
particularly to a characteristic fixed velocity AC = IKEI, can thus be defined
by the datum of the rotation vector ZT and of Aa [vector Ze is then deduced

from Z} and AC by (19)], that is to say by the datum of a point G in the axes

X,=7 Aq,y,::\/%ﬁ}',zﬁ%?- (Figure 5).

S

By applying impulse AC to point M(L) in the optimal direction 3, we reach
a point G = V situated on Viviani's Window (V) with parametric equations:

x,=ACsinl cos !l
(V) 3y, =4Csin?L (20)
z =ACcos L

With the same characteristic velocity AC it is possible to reach any point
G inside the volume (V) limited by the smallest convex contour surrounding (V)

by composing an impulse of type V, so that their sum is equal to AC and that
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G is the center of gravity of the points V treated as fictitious 'masses"
equal to the impulse magnitude in #. It is even possible to envisage,
in the extreme, a modulation of the thrust [distribution of the "mass" AC on

the orbit (0) with linear density F(L) f-Fmax]' Thus the center o of circle

(C) can be reached by applying a constant thrust F in the optimal direction
(Figure 12).

/140

Fig. 5. Type 111. Viviani's Window.

If a point of the right cylinder (CI) with parabolic base (P) or of the
right cylinder (CII) with a circular base (C) makes up the frontier surface of
the domain, (V)is obtained with the aid of two impulses. These non-degenerate
solutions assure transition with solutions of type I or II.

Then the question comes of knowing whether, among all the degenerate
optimal solutions referred to a point G inside the volume (V) limited by (CI)
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and (CII),

affirmative: every point G can be obtained by a bi-impulsional solution, and
that in two different ways.

there do or do not exist bi-impulsional solutions. The answer is

In fact, on the sphere (S) on which
(f?) it is plotted, Viviani's Window (V) sep-.
arates the regions 1, 2 and 3 (Figure 6).
Let G be a point inside volume (V). The
cone of peak G lying on (V) cuts across
sphere (S) according to a curve (T).
Let V be a point of intersection of (V)
and of (I'). The straight line GV cuts
across, by definition of (I'), Viviani's
Window in V', point V' itself being on
(r) since V is on (V). Therefore the
segment VGV' corresponds to a bi-
impulsional solution, with the impulses
being applied in L(V) and L'(V').

Therefore,there are as many bi- /141
Fig. 6. impulsional solutions relative to point
G as there are pairs VV'. Therefore,
the number of these solutions is equal
to the number of points of intersection
of (V) and (') divided by 2.

Let us then consider the section of
the figure through the plane Y1 = cte
passing through G. This plane cuts the
sphere (S) according to a circle (C')
and the Window (V) according to four
points V V,, V V4 (Figure 7).

1> 722 °3°
The diagonals V1V3 and V2V4 of
rectangle V1V2V3V4 separate the superior

(s), inferior (i) right lateral (d) and
left (g) regions.

It is evident that points T,, T

1’
are part of (I'). If G is in

2’

Fz: Ty

region (s) (Figure 7) F3 and T, are both

4
in region (1), while Fl and F2 are in region (3). Since (T') is a continu-

ous curve, there are always at least two intersection points between (I') and
(V), i.e. a bi-impulsional solution relating to G. The same result is found
if G is in Tregion (i).

167



g |

W)

168

SN
<3

“G<

Kﬂ

<

If G is in 7region (d) or
(s) (Figure 8), it is likewise
shown that there are at least four
intersection points between (T') and
(V), i.e. two bi-impulsional
solutions relative to G.

(Cﬁ Let us now show that in all
these cases there are two,and only
two ,bi-impulsional solutions. For
this it is enough to demonstrate
that there exists at least one point
G inside (V) which enjoys this
property and that by continmity
this property is extended to the
totality of the volume (V). For
this let us take G in the center
o of circle (C) (Figure 9).

Let VV' be a cord of (V) /142
passing through o. The circular
projection of (V) on the plane z) = 0 shows that

o must be the center of VV'. Therefore let (V')
be Viviani's Window, symmetrical to (V) in rela-
tionship to o. (V) and (V') have in common
only the points Vi, V2, v, and Vys as the pro-

jection on to plane X = 0 shows. Therefore

there are only two bi-impulsional solutions
corresponding to the pairs V1V3 and V2V4.

Starting with point o, let us suppose that
we find a frontier inside (V) separating this
two-solution zone from a zone with one or three
solutions. The curves (V) and (I') are then
tangent, therefore bi-tangent, and the tangents
to the contact points are co-planar [in the
plane tangent to the cone of peak G lying on (V)].
This case can only occur for (V) if G is on one
of the cylinders (CI) or (CII) limiting (V). 1In
that case the two bi-impulsional solutions coin-
cide in ome.

The property mentioned has therefore been
demonstrated (Figure 10).
The longitudes Ll’ L2, L3, L4, of the im-

pulse points corresponding to the two bi-impul-
sional solutions Vlv3 and V2V4 passing through



G are connected by a relationship independent of the position of G obtained by

writing that points Vl’ V2, V3, and V4 of Viviani's Window (V) are in the same

plane (defined by VlV3 and V2V4 intetsecting at G). This relationship is:

bibyly # bt + bbb s Bl 4 b by + b+ £ 0 (21)

3

where t = tg %n

NOTE: In § II,5.3.2. we shall see that the
first order degeneracy found for solutions
of type III disappears if the linearization
is made around a nominal orbit with weak
eccentricity (e << e << 1). Then the
optimal solutions are mono-, bi- or tri-
impulsional.

11,5.2.2. Accessible Domain.

With a given characteristic velocity
AC, it is possible to reach all the points
situated in a certain hypervolume called
"accessible domain' in four-dimensional
space of variations Ae//, Ae,, Aj and Aa.

We shall represent this domain by its

sections Aa = Cte in the three-dimensional
space Ae,,, Ae,, Aj (Figure 11) reduced to
P // L

the octant Ae// > 0, Ae; > 0, Aj > 0 by
the considerations of symmetry made at the
beginning of the study.

The economic transfers evidently
correspond to the points of the surface of
the accessible domain.

Fig. 10. Type I11.
Bi-~impulsional Solutions.

The surface of the fourth degree
CFNMC (Figure 11b) of equation:

2 2 2 2 .2 2 2 2 2
(-4e, +z3 Aa"+AC ){Ae_,_+ll/ +A45’ _A(‘)+Ae_|_ /Ae//~A32/:0 (22)
corresponds to solutions of type I.
The part FNF,F of the ellipsoid of revolution
2
A4e// + el +Aj7=AC? (23)

of the axis of revolution 6?2 corresponds to solutions of type II.
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(a): Aa=0

(1) :0<|Adl <2AC
(¢): |Aa] =2AC.

ible Domain.

Fig. 11. Access
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13. Particular Solutions.

Fig.
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Finally, FZNMMZFZ of the elliptical cylinder:

Aed  (lbes] VI Iail Ve ac?
72 "(_2—"2 j) @

lying on the ellipsoid (II) corresponds to solutions of type III.

The vectorial relationsip (19) is shown in Figure 14.

Fig. 14, Type 111. Consumption Vector AC.

When the relative dilatation of the semi-major axis varies from 0 to 2AC,
part corresponding to solutions of type I increases from the arc of circle
COM0 (Figure 1la) to the circular sector ONZMZO (Figure 1ic - type I bis). The
surfaces relative to solutions of type II and III remain fixed, and only their
surface diminishes (Figures 15, 16, 17, 18).

The solutions corresponding to the numbers shown in Figures 11 and 12 are
described in Figure 13.

In order to fix the orders of magnitude, let us give two deliberately very
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simple examples corresponding to two particular points of the 'accessible
domain" (Figure 19).

Let there be a circular, circumterrestrial orbit at 500 km altitude. /149

An impulse AC of 10m/s perpendicular to the plane of the orbit produces a
lateral separation of 9 km at the end of one quarter revolution.

The same impulse, applied tangentially forward, produces an altitude gain
of 36 km accompanied by a longitudinal lag of 85 km at the end of a half

revolution.
11,65.2.3. Conclusion.

Optimal transfers between close, near-circular orbits, co-planar or not,
with eccentricity of the same order of magnitude as the size of the transfer,
can always be realized in the first order with only two impulses (exceptionally
one impulse). In certain degenerate cases, greater liberty is left for the
choice of the optimal solution.

Only a higher order study permits a determination of the exact number of
impulses necessary to achieve optimal transfer. Breakwell [16] has shown that
in the vicinity of the arc'EBMO of Figure 1la, there exists a zone correspond-

ing to tri-impulsional solutions. Second order study of the solutions of
types I bis and III should also be within reach.

In the following paragraph we shall satisfy ourselves with the linearized
study of these solutions in the case of elliptical orbits with weak eccentri- /150

city and no longer of near circles.

I1,5.3. TRANSFERS BETWEEN ELLIPTICAL ORBITS OF SLIGHT ECCENTRICITY (e << e << 1).

The study of impulsional solutions close to the solutions of types I and
IT found in § II,5.2. in the case where linearization was made around a circle
(e = 0) would lead here to results qualitatively similar to those already found
and differing from the latter only by quantities of the order of e.

On the other hand, the study of impulsional solutions close to the solu-
tions of types I bis and III (degenerate in the first in the case where linear-
ization was made around a circle) is of interest because it leads to qualita-
tively very different results (disappearance of the first order degeneracy).
Therefore we shall limit ourselves to this study.

The choice of axes is indicated in Figure 1. Ox is directed this time
toward the perigee P of the nominal orbit (0).

Here a supplementary transfer parameter is introduced: it is angle §

between the major axis 0x of the nominal orbit and node line Z?.
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Fig. 19. Examples.
11,5.3.1. Solutions Close to the Solutions of Type | bis.

As in Chapter II,4., instead of the state component a, we shall use the

state component:
Bz‘/‘b& (here /1:7) (25)

where b is the semi-minor axis.

>
The thrust acceleration ? applied at point M in the direction D produces
the variation:

a’B,:_g(L 62)—3/4[6.5‘/'/7 X+ [2+ e(cos v - cos u)]?} DYdt=K.D¥ de.(26)
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In the expression of the vector of efficiency B:, the term 2pav must be

replaced by pB-}z. The expressions of T and V are more complicated because of

the fact that now e is # 0.

The solutions close to the solutions of type I bis in the case e << e <<

<< 1 are obtained for a kinematic adjoint P close to that relating to case
I bis studied for e = 0.

Therefore let us posit:

P=[P:,—; P9»P5=55"JP3'/’«16’3]

(273
where e, = *1 and where IJPB,’ ’Rxl’ lpﬁ!,lpfl,[p,}! are << 1.
We shall posit:
/‘/:max( OPs| | Pl s egl.lpfl,!pal,e). (28)
The "vector of efficiency" ia); has the components:
X=p sin L pg cos L _ _‘;i e s/ { ».order M2
P ) Y=—Ea-Cpg+ 2py cos L+ 2pg 17 [‘ff ez/7+ mezl) (29)

+p e sintl - pg € 51 L cos [+ order M7

Z:-—p

) cos L + Py Sin L 3 order p2

The direction of optimal thrust 3 = ﬁf therefore is not far from axis ﬁ?. /151
On the other hand:

pr=l-2¢&, (_J,DB +2p, cos [+ Z,Dﬁ sin L)+ orderM’

7- 2(,“5[_5,08 +2p, 50.5‘[[_[2)] +order M* (30)

and positing as usual:
Pi=P. cosl .
¢ (P._gf/Pe /> 0} (1)
Fa=Pe sin L,
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a) If Pe >> M2, _ﬁvz only admits the value 1 as a maximum for L = Le + order M
and on condition that cSpB = 2pe + order M2. There is only a single impulse per

revolution, which restricts the solution to the case of intersecting orbits.
Therefore the solution is not general.

b) Therefore we shall suppose the lde] and P, are of the order M2. Then:

,D_V{)= 7+ 3_2_2_(7+ cos 2[)__ 268 EJPB + 2pg e‘a.f(/_[e):, +p2 5/'/7’/[_[2)forde'37"73 (32)

by positing:

= [ —
IDF Pe €05 (DI:/,DZ/)/O)

Py= Py S 4, (33)
Equation (32) is written again:
- (34)
pli=T+Arpcos(l-L,)+V cos 2 (L w)prder M3
with
_9e? 22
A==+ 26 0P 1ty (35)
H=—4E5 P, (36)
Veos 2w =3 e*. P cos 2L,
8 2
Vsin 2 ur=— P2 sin 21, (> 0) (37)
2

_ﬁ—‘jzonly admits the value 1 as a maximum for two values L' and L'' of L if this

quantity is of the form:

;Vz= 1k [7_ cm.(/_/:)] I:/_ cor(l—lly] + order M3 G389

an expression which depends on the three parameters k > 0, L', L''. Whence the
two conditions of compatibility among the five parameters A, u, v, Le’ w,
occurring in (34):

W_ Ly =(2p +7/%7‘f ordery/ (39)
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A:—(gﬁ;fﬂ)?"order M3 (40)

and the inequality: /152

Vo> % + order M3 (41)

expressing k > 0.
The application points of the impulses are therefore given by:
4 = [Z 2 Arc CUJL +order M. (42)
/Y 4V
Their straight ascents are near-symmetrical in relationship to Le.

The bi-impulsional solutions thus obtained are of a general type, con-
trary to the mono-impulsional solutions previously found, since seven parame-
ters are available (pg, pn, GpB, P,> Pg and the magnitudes I'AV and I''AC of

the two impulses) reduced to five independent parameters by the two equations
(39) and (40), in order to realize the five variations of the orbital elements.

The optimal directions of the impulses are given by:

-

X=_€8 & sinl + order M?

ID—V*’< Y=_£8 _Jpﬁ + 2/0@ COJ(Z—Z¢)._ 6222(7’*2(‘052[)*01‘(161- M3 (43)

Z=p,sinfl_L,)+ orderp?

L

1/ If p, >> e (therefore M = pz), we deduce from (35) and (37):

2
J a2 _825 >0 (44)
wal, t g (45)
pz
Aoe 2¢58pg + 2‘ . (46)

The conditions of compatibility (39) - (41) are then written:

/Dzz >~ 263 Pe (47)
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Lol rgim [9in‘teger).

(48)
Therefore the vectors —ﬁ—) and i)H are colinear.
e z
Pe ., p?
‘s"apag‘(z : *Pz)<0' (49)
Pz
The two impulses are applied at points:
L’ ] ~ P
o 1 L, * Arc cos (_ 2 &z P—E) (50)

symmetrical in relationship to Pe and P,

In particular, for Pe << pi, the two impulses are diametrically opposed:

L] o L, I (51)
[//} +2

and

3 dpg=-p; <9- (52)

The bi-impulsional solutions thus obtained for p, >> e could be called
type I, in analogy with the study of § 11,5.2.1.3.

2/ If, on the contrary, p, << e {(therefore M = e), we obtain by (35) and (37):

w~ kI (53)
2

92(_7}"% e?>0 therefore k=2q et w=gm (54)

~ 9e? .
,\__8_2 +2CBJ,05 (55)

Thus the conditions of compatability (39) - (41) are written:
I .2

= e*>_¢Ex P, (56)

L, == 2/‘*-7 I
e=( ) 2 (57)

&g Jp5_~__(§_ £L 32l )co.

3 e 4 (58)
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The two impulses are applied at points:

ZI ~ 7 -+ 86 Pe,
ll,}_(2r+ 7)?_/4/'( cos _557. (59)

symmetrical in relation to the minor axis*.

In particular, for p, << e2, the two impulses are diametrically opposed

and applied at the perigee and apogee of the orbit, and:

Es (fp,gz_zj’_ e?<0. (60)
The solutions thus obtained for p, << e could be called type I bis, by

analogy with the study of § 11,5.2.1.3., although here there is no more degen-

eracy of the linearized solution.

c¢) Equation (34) shows that sélutions with three iZmpulses or more can only be

found if X, p and v are simultaneously of order MS, while still heeding the
definition M = max (pz, e), This is not possible unless: /154
L, = + orderM (61)

which assures that v = order M3

0
B
pz=§@ ¢ rorder M°

(62)
3 5 :_.:_?_ 221‘ M3
8 9Ps 7 order (63)
p, = ordre M’
(64)
Then the direction of impulse is such that:

Z _ -

—/r— = 4 53 ‘/57" OrderM. (65)

Therefore this direction is approximately contained in one of the planes

(ﬂ+) or (w ) going through M and forming angles of *30° with the local hori-
zontal plane.

* Note that for p, =0 (coplanar case) we find again the commutation b [131

The commutation ¢, is found in the plane type II.
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These solutions, of a new type, will not be studied in detail.
11,5.3.2. Solutions Close to the Sclutions of Type IlI.

These solutions are found in the case € << e << 1 for a kinematic adjoint

P close to that referring to case III studied for e = 0.
r,D}, = pg COS ZZ=(_2‘/.—‘?. + J/Jz) cos L,
Py =Py sihl,= (§+ Jpz) sin L,

P <P (66)
Px=pPg €05 L, = /~2Z_ + Jpe) cos (,

Pg= P SiN Ly = (?7 ‘ J,ae) sin L,

.

Since the nominal orbit (0) is no longer circular, it is no longer possi-
ble to a priori impose Py = 0, that is to say Le = 0 with the choice of axes

indicated in Figure I,3. -1.

We shall posit:

o —
Zzzle *{ *dL according to AZ_O:{‘ (67)
d 7
where 6L = 0 for solutions of type III of case e = O.
We shall also posit:
M= max(e. ], 185:]. 1 92 | L) o
Then the "vector of efficiency' has as components: /155
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X=L sin(l-Lo)+0pgsin(t- Lo )+ oraer M2

Yacos(l. 4,) ,«_S_ sind sinfl L)+ 28p, cos(L. L, )+order M? o)

<v|

4
7= l:\é} sinfl. L,)-Y2 ec‘o;[.rm(l L)+8p, sin(l-L,)

_‘g—_i al cos[[-[¢}+ order/‘ﬂ]

The direction of optimal thrust is situated (at approximately order M) in

one of the planes (ﬂ+) or (r ) going through W and forming angles of +30° with
the local horizontal plane X = 0 (i = -Ae ).

This direction coincides with MY (at approximately order M) for L = Le and
L=1L_+ 7.
e

On the other hand:
=/ +A+p caJ‘(w )f\)Co_S‘Z(w w2)+8 6‘05(321/7‘-[ )#+order M2 (70)

by positing: »
w=1L_1, (71)

_ 56 V3 sp
A 7 Pe 75 (72)

M cos W, = 4,03—5-?00: L,

73
;15mw=77e5/'/7[ (ﬂ>0) 7%)
7 _8_ e

Veos 2 w, = gé'p \/_

V>0
Vsin 2 wzz_lfi YA ( ) (74)

The datum of the five parameters Pys 6pe, Les 6pz, 8L is equivalent to

the datum of the five parameters A, u, v, Wy, Wy

a) If e, IGL] and I/g 6pe - 6p2| are << M (and therefore v << M), for example
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if these parameters are of the order M2, P, can only have the value 1 as a
maximum for a cingle value of w:

w=w, o+ order M = order M. (75)

on condition that: /156
)\7‘-/[ =.§ 5/05 +_\£_§Jpz +4/pé,/+ order M2_ order M2, (76)
These mono-impulsional solutions are not of a general type (intersecting

orbits). They could be called solutions of type (3) ("triple point" N) by
analogy with the study of § 1I,5.2.1.3. (Figure 11b).

b) If e << M (for example e = order M2) and if, moreover, the conditions:

\)>2./_1_ # orden/2 . s o V>/Pa/+ order p72 (77)
w, _ W, :(Zp +7/2L7 torder.M ¢ a. o /8 :(2,0+ 7)_271 rorder /7 (78)
A= fH® . )) rorder M2 (79)

(557

are satisfied, 2 P2 allows the value 1 as a maximum for two given values of w
by:
—w, * Arc cos P s order M=* Arc cos #_ 4 orderpy (80)
w” 4v 4y

as reasoning analogous to that in § II,5.3.1. shows.

The bi-impulsional solutions obtained in this way are of a general type,in
contrast to the mono-impulsional solutions. In fact there are available seven
parameters (pa’ cSpe, Le, sz, 8L and the magnitudes I' AC and I'' AC of the two

impulses) reduced to five independent parameters by the two conditions of com-
patibility (78) (79), in order to realizeé the five variations of the orbit
elements.

The two impulses are symmetrical in relation to the direction of any argu-
ment L. The solutions obtained in this way could be called type (4) (transi-

tion III <> I) by analogy with the study of § I1I,5.2.1.3. (Figure 11b).
Let us note that (78) entails:

dl = order M? (81)

and therefore 3 3p, __‘/—
(82)
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so that equation (79) is also written:

. 4p3
(Jpz-f \/Eo’pz)/\/.?cfpe _dp, =73&- (83)
e ]Pal << M (for example ]pa] = order MZ), then z:,} = i%—+ order M.

The two impulses are almost diametrically opposed. These solutions could
be called type (13) (transition III <> II) by analogy with the study of
§ 11,5.2.1.3. (Figure 11b).

¢) If e = order M, the presence of the term in cos(3w + Le) in (70) shows
that there can exist cases where p =~ allows the value 1 as a maximum for three
values of w, i.e. tri-impulsional solutions may exist.

For this it is necessary for 532 to be in the form:
z
P, = 7—/\’[7— cos(W W’}:I[/_ cos(w - w”):] [:7_ cos(w_ wﬂj:l (84)

where w', w'’, w’’’ are relative to the three impulses and where k > O. /157

The identification of the coefficients of the terms in cos 3w, sin 3w and
sin w in (70) and (84) leads to:

k=2 > 0
2 (85)
W+t wr+ W 1"Ze=0 (86)
SIn U+ ST U 4 ST W A S W SN W S0 W = 3 sin Z, (87)

Let us note that it is still possible to write the vectorial equation (19)
and to use Figure 5 while committing a relative error of the order of e. There-
fore the angle Le’ with the exception of e, is the straight ascent of the "con-

sumption vector" 2C defined by (19). Therefore Le is well determined for a
given transfer.

Figure 20 concerns the resolution of the system (86) (87) referred to w’,
w!’, w''' for different values of Le'

The abscissae, counted on the axes indicated, at the foot of the perpendi- /158
culars dropped from M onto these axes are respectively equal to

wirke , warLe, wm +Le
)

3 3

The locus of point M when w', w'’, w'’’, solutions of the system (86) (87)
vary with Lo remaining definite, is a line in the plane thus defined. It is
possible to limit oneself to the case 0 < L < 90° and to the interior of the
equilateral triangle OAB. Then it is necessary to complete by symmetry

186



referring to the sides of the triangle and the sides of the successive
triangles obtained in this way.

A w’+_L_6_’
3

Fig. 20.

Only the lines L_ = 0 and L_ = 90° in solid lines have been calculated.
The plot of the other lines, dotted, is only probable.

a) Case Le = 0.
The "consumption vector” 2C is parallel to the major axis of (0).
There are two types of tri-impulsional solutions:

1. SYMMETRICAL SOLUTIONS (segment OG of Figure 20).

L= O (88)
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LY=L’ (89)
These solutions consist of applying an impulse tangent to the perigee P
(L''' = 0) of the orbit (0) and two impulses to point M’(L') and M''(L'"),
symmetrical in relation to the major axis, practically contained in one of the

planes (n') or (n ) (Figure 21b).

According to the relative magnitudes of these impulses it is possible to
attain any point G inside triangle PV'V'' (Figure 2la). G is the "center of
gravity' of the ficticious "masses'" placed in V', V'' and P in proportion to
the corresponding impulses.

The third order cone of peak P, based on Viviani's Window (V) and equation:
Yo (X7 2y )= 2(AC-2,)(x]+y}) +y, (AC- z,)?=0 (90)

limits to the inside of the total volume (V) a volume corresponding to the
symmetrical tri-impulsional solutioms.

In order to visualize this volume better, let us consider its sections
e~ —
Yy = Cte produced by the segment v'v’’. The limitant'VlV3 V2V4 of equation:

in ﬁdc"Y1"zf)z

=y (& "7 = conslant
=Y 2hC-y, - 27, (s ) (91)

is symmetrical in reference to X = 0,yand admits of a double point in

= AC - Yy, an asymptote z, = AC - El-and two parabolic branches parallel

. o
to the axis Ozl.
2. DI-SYMMETRICAL SOLUTIONS.

—
These correspond to the near-circular arc EF of Figure 20, symmetrical
in relation to 0G.

l’ el _ 1Y (92)
. ’ b )
[ (" 2 Arc co.s‘(f/n%-/ tg éZ_ . (93)
When L'' varies from -90° to -103°40¢%, (arc DE of Figure 20) the

point V'' describes the arc TS of (V) (Figure 22a), while points V' and V'!

respectively describe the arcs 1T and PT. Point T corresponds to angle
L = 51°50¢,
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%
(fifv Fig. 21. Type IIl.Symmetrical Tri-
¢ a impulsional So]utions-(Le =0, Ae, < 0).

AZr

P

Vl
o
X
d Fig. 22, Type Ill. Di-symmetrical Tri-

impulsional Solutions. (Le =, Ae, < 0).
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By a suitable choice of the impulse magnitudes in M', M'', M''’, (Figure

22b), it is posible to reach any point G inside triangle V'V''V''',

When L'' varies, this triangle entails a volume limited by its ruled

This volume and the

0 correspond to the di-

volume symmetrical in relationship to plane x

surface produced by segments V''Y''1 Yy yryre,
symmetrical tri-

impulsional solutions.

N
S’

|

i ]
i,

I,

g4

Vfl

0,9345A¢

1

4

Cte

Sections Yy =

Fig. 23. Type I1II.
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Figure 23 summarizes the previous results by showing, for each section
te . . . .
Yy = C"", the zones corresponding to the optimal two impulse solutions (2) or

to three symmetrical (3S) or di-symmetrical (3d) impulses.
The frontier of zone (3d) admits of angular points in V

Yy =Yg = 0.9345 AC, points V3 and V

< ¥y = AC, they are angular points.

1’ V2 and 7. For /161

4 are turning points. For 0.9345 AC <

It can be noted that for Y1 2 8C, zones (2) with two impulses are very
reduced.

. S .
This case corresponds to a rotation Aj around an axis close to 'parameter"

2> .
Oy, associated with a shift of the center in a direction close to the major
axis and with a weak ''dilatation’. Then the three impulse solutions present

a small impulse tangent to the perigee (3S) or almost tangent in the vicinity
of the perigee (3d) and two other impulses, of which at least one is signifi-
cant, almost perpendicular to the tangent at the orbit, applied at points close
to the peaks of the "parameter", and symmetrical in relation to the major axis
(3S) or almost diametrically opposed (3d).

b) Case Le = 90°
The '"'consumption vector" AC is borne by the 'parameter" 6; of (0).
The three impulses are situated near the apogee (Figure 24b).

When the near-circular arcs ﬁﬁ, JK of Figure 20 are described, symmetrical
[ |
in relationship to BJ, points V'V''V''' respectively describe the arcs FA AD,

N N N N . .
EQ QD and FS SC (Figure 24 a) with:

162
W= 40034 [ = 130034’ /

W= 47°03" [= 137°03'
W= 65012' [= 155012
900 L= 1800

W= 114048" [ = 204°48'
W= 132057" [ = 222057
W= 139036" L= 229036

0O O »mn N
=
t

Then triangle V'V''V''' produces a volume limited by the ruled surface
produced by the segments V''VI'!' V'!''y' gnd V'V'?',

This volume corresponds to the tri-impulsional solutions of case L, = 90°.

It may be noticed that this volume is not as significant as the one which
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refers to case L = 0°.

Fig. 24. Type Ill. Tri-impulsional Solutions. (L_,=90°, Ae1<0).
11,5.4. CONCLUSION.

The complete analytical solution of the first order, referring to the
problem of economic transfers (minimal characteristic velocity, indifferent
duration) between close, near-circular orbits, co-planar or not, was obtainable
by linearization around a nominal circular orbit.

Such transfers can always be realized in an optimal way with the help of

two well-determined impulses. Nevertheless, in certain cases (degeneracy of
the linearized solution) a more extended choice is offered, and the same
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transfer may be able to be achieved in various ways, since the corresponding
consumptions differ only by quantities of the second order referring to varia-
tions in the orbit elements.

However, this degeneracy disappears if the transfer takes place around
orbits with an eccentricity smaller than one,but larger than the size of the
transfer, and then the solutions are mono-, bi- or tri-impulsional.

Il1,6. OPTIMAL IMPULSE LONG DURATION RENDEZVOUS BETWEEN CLOSE NEAR-
CIRCULAR ORBITS, COPLANAR OR NON-COPLANAR.

11,6.1. INTRODUCTION.

In addition to the five imposed variations A, An, Aa, Aa, AR of the
orbital elements considered in Chapter II,5. in the case of transfer, the
sixth variation At referring to the rendezvous must be introduced here.

Let us recall that, for any e, At = (temporal lag éto, counted on the
final orbit (Of),

as the initial real mobile Mo’ referring to the initial target mobile

of the fictitious mobile M; of the same straight ascent LO

3 > > . =t
Mco) + E'Mo ha + Ro Ae (Figure 1). M0 and Ro can depend only on e and Lo.

Here, e = 0, and the temporal lag &t can be replaced by the angular lag
— o

M_OM.. Furthermore M = L and & = 3; .
co o o} o} o} o)

/163

(C%) The linearized equations
1h/r 3 _R..De which permit these six varia-
@#ﬂ'zﬁzAd ) tions to be calculated are
A written, in the order approxi-
"V mately relative to e (see
“° Appendix 3):

~

A er = gy il
D'=_ gy cosl
Fig. 1. Interpretation of the Parameter o'=2y
AT. J - 4 (1)

&’= gy SInl+ 2y, cost
Be-gyx o5l + 2 gy sinl

Z":-—ZXX +3l{y

\
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The efficiency vector has as components in the turning axes:

KX==FQ Jﬁ?(z-z;)._ézor
Y=2p, + 3 pp L +2pcos(l-4)
L____.—.V_—.—___-——’
2/051
Z:pz.f/h(l—[z)

-

(2)

>
Ao

Continuing, we shall suppose that the rendezvous 1is of long duration,
i.e. that the transfer angle AL is >> 2.

If we then admit a relative error in the solution, no longer of order e

but of order: max (e, %EJ, the equation in t' may be written:
= 3Ly, =~ 3(2k7) ), (3)

where k = (turn number) < N = (total number of turns).
Then the efficiency vector becomes:
X=pe sin(l-Le)
Y= 2yt 3p L+ 2P cos(l-L, (4) /164
- P;p:r . (t-Le)
Z=pysin(l-1;)
.

In this approximation it is important to note that the straight ascent L
intervenes only by the turn number k, which simplifies the solutions a great
deal.

Let us also note that since only the impulsional solutions (or strictly
. . . >
speaking, the singular solutions) are considered here, ]pVI is < 1; therefore,

in (2), |y| is < 1, which brings about: o < order %in
I1,6.2., ACCESSIBLE DOMAIN,

This is a matter of defining the totality of the points of the five
dimensional space of the variations Ae//, Ae,, 4j, bda, At which can be reached

with the characteristic velocity AC.

In the case of long-duration rendeszvous, it is convenient to take, no
longer AT, as the sixth variation but:
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4 AT, fo_t Il L A5, order L
ACe- S o #0055 4+ 77 T 4 (5)

which introduces supplementary symmetries into the accessible domain.

As a matter of fact, observing that:
Cr=4 T +a'=(7_2£)a'
3 AL N (6)

. > . .
and taking the axis of reference Ox according to the line of the nodes, the

support of the rotation vector K? (da and dp then respectively represent de//

and dei)’ it 1s possible to modify the sign of each of these five variations

defining the rendezvous, without modifying the other variations, by making
the following changes for every thrust:

De, Aes, AjAa AT L

k
-de, n-L| £ |-X
-Aey -L | £ | X
-4 w+l| & X

~As | meL|N-k | X | Y | Z

27| Lok X | Y | Z

Z
-Z
Z
Z

XXX <

Since these changes do not modify the magnitude of the thrusts, and thus
consumption, the accessible domain is symmetrical in relation to the axes,
planes and coordinate spaces, and it is enough to consider only the positive
variations. (However it is sometimes convenient to consider any sign varia- /165
tions in order to show how the optimal solutions are linerally composed).

Let us first attempt to define, in the plane Aa, AT , the totality of
points accessible with the characteristic velocity AC, with the variations Ae//,

Ae,, Aj being fixed.

This presumes that the characteristic velocity AC is at least equal to the
minimal characteristic velocity Acmin necessary to produce the variations Ae//,

Ae,, Aj which define point G of Figure 2, or:

195



fes

max (IAa"lA'er< lA":’lh/n =8 IIlm mar(lAa|;|Afl) =|Aa|lim=|A‘r|lim

Bey
Bey
Fig. 2. Domain Accessible For: Fig. 3. Domain Accessible For:
max (|[Aa|, |AG|)< Mallim = IACllim' max (|Ae|, [AT]) = lAaIlim = IACIlim'
4j

+AC>AChip ). 3pe

Ior

oG

+20C>2AC 0
be;

@ @
maX(lAal,lA-fD>IAallrm=lA'?'l/m

+2AC > 20Cnin
ey

Fig. 4. Domain Accessible For:

max (IAGI ’ !ACI )> IAalhm = |Az;!hm.
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2 .2 . 2 .2
’ Afz Whei+ A" 5i 3he; < 4;7(T) /166

Acty ACE,, = (7)

Aes (hel+V3I4/1)" o 580 5 4) (i)
72 4 |

There then exists, associated with AC, a maximal value |Aa]max of |aa|

(Figure 4) obtained in the study of simple transfer (AT indifferent). Aa;ax
is the largest of the T00Ots of the biquadratic equation (II,5. - 22).

The domain accessible in the plane Aa, AT is therefore necessarily con-
tained in the band: —]Aa|max £ ha < + lAalmaX (Figure 5). The segment: AT = 0,

-|aa| < ha < + |pa of the plane, obtained in the case of simple trans-
max — — max

fer, is nothing but the apparent contour of the domain accessible in this plane

relating to rendezvous, and parallel to axis 0T

7N

f:'u
3
Q
x

v
Y
v
(e sis kL

; Hdajmax

%

L.¥)

Fig. 5.

Now 1let us consider the thrust law which produces a maximal variation
AT (Figure 6). A certain variation Aa corresponds to it.
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Equation (6) shows that this thrust law is mnecessarily such that every
acceleration (da > 0) is made in the first turn (k = 0) and every deceleration
(da < 0) in the last turn (k = N). (Solution of type AODH).

Let us show that the same value AT can be obtained for Aa = |Aal .

max max
For this it is enough to modify the thrust law in the following way:

Every deceleration at the point of straight ascent L, due to a thrust in
direction X, Y, Z, produced in the final turn, is replaced by an acceleration
of the same magnitude at the point of straight ascent L + 7w, due to a thrust

in the direction -X, -Y, -Z, produced in the first turn.
/167

#Af

_

Ba[max

-/ a/max4

Fig. 6.

This modification does not change Ae//, Ae , Aj and ATmax (nor obviously
AC).
The new solution, optimal since it leads to ATmax’ and including only

first turn accelerations (type AO), is such that:

Azomax:Aa \<A‘9ma)r' (8)
Now, the optimal solution of type I (or, strictly speaking, the boundary
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between types I and II or I and III) found in the study of simple transfer
and leading to Aa . can produce:

AT=2403,,:x (9)

on the condition that every acceleration is put into the first turn (bi-
impulsional solution of the type AOAO).

A comparison of equations (8) and (9) shows that AT = Aa and that
max max

the optimal solution AO = AOAo is of type I.

Let us observe that, for AT = ATmax’ any intermediate value of Aa between
-|aa] and +|Aa] is obtained by a linear combination of 4 D, of the solu-
max max o H
tion of type I: AO = Avo (two accelerations in the first turn) leading to
+|Aa|maX and of the solution of type I: Dy = DDy (two decelerations in the

last turn), leading to —lAal (Figure 7).

max

NS

nkk
nmtnng
N \\\\\\\§§§ .

7

%///

iA
Rk BT \\\\\\\\ \N
\

5
3
QU
>
)
.
_

\

o

[Aamax

AC

Fig. 7. Domain Accessible in the Plane Aa, AT.

The corresponding optimal solution, of a new type (type IV), corresponds
to a value of P_ which is not 0. Its existence is easily deduced from a
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consideration of the efficiency curve (Figure 8).

In fact, for P, # 0, this curve can be considered as described by point
P, describing with period 27 an ellipse, contained in a fixed plane (m)
passing through ﬁ?, and shifting slowly and parallel to ﬁ?, with the shift per

turn (or '"pace") being equal to

AY =3p, (27) = orderd_’[ « 7.

X

Fig. 8. Efficiency Curve in the Case of Distant Rendez-vous.
a - Type IV
b - Type IV bis

A solution of type IV is quadri-impulsional and can be regarded as a
combination of two solutions of type I: one, Ao, in the first turn (two accel- /169

erating impulses AOAO at the points of direct ascent Lg and Lé', with

Xé' = —Xé, Yé'= Yé, Zé' = —Zé); the other, DN’ in the last turn (two decelera-
tion impulses DNDN at the points diametrically opposed to direct ascent

LI = L' + m and

N o]

4 ” .
Liy=Lg# T, with Xj=_ Xiy= Xy, YiaYia Y, Zi=_2,=2,.
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Let us also note that since point Ao(]Aa]max, IAT]maX) can be obtained

with the characteristic velocity AC, point AN(IAa]max’ -lAT]max) symmetrical

to the first in reference to axis Ohda and corresponding to a solution of type
I with two accelerating impulses Ay applied in the last turn, can also be

obtained with this same characteristic velocity, as can every point 4 of seg-
ment 4 Ay (e.g. by a linear combination of the solutions AOAN; but we shall
see that this is not the only possible procedure).

In conclusion, the domain accessible in the plane Aa, AT with the charac-
teristic velocity AC and for given Ae//, Ae,, Aj 1is the inside of the square

AODNDOAN represented in Figure 7. From this it is deduced that:

section ha = Cte, AT = Cct® of the domain accessible in the three dimensional
space Ae//, Ae,, D] is the same as that corresponding to simple transfer on

condition that |pa| is replaced by max(|aal, |aT]).

the part of the

domain called (1) in the case of simple transfer should be named {(f) (Figure4)
(I bis) (1v)

(or else {

Ad = O . , -
(IV bis)’ when Aj 0; in this last case |Aalmax 2AC)

According to the expression: max (lAal, faT]) = { 2;1:

v oy ety e ttecima.

ey St rr— rma——— | Fr———"

N
AR

\ \
NN
\ g
L
AR
g AN

T e

N
R
\\ N N \\i\\\\ \\b\\\\\\\ \\ X
N \§\§\}® N

AR

TN - DN NN \\ .
: \Q\\&\\\\Acm/n\ RN D eyt

N

N
N

.
—— e
'

."..'.l..'ll..lﬂ.'

A e W/

Fig. 9. lso Lines AC,
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Now let us trace the iso lines AC (Figure 9) in plane Aa, AT for fixed

Ae//, Ae,, Aj.
If AC < Acmin’ no rendezvous can be achieved.

If AC

1

m

. . . II .
DZo’ AZN can be attained by using solutions of the type {III depending on

whether 3Ae,? $ Aj2.

If AC > Acmin’ the iso AC is formed by the four sides of the square

AoDNDoAN'

Figure 10 indicates the values P, corresponding to each of the regions of

plane Aa, AT.

AAT

‘Pr< 0

Pt =0

pt>0

Fig. 10. Value of prt.
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AC in (Figures 2 and 3), all points inside the square AZo’ DZN’
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I1,6.3. DEGENERATION OF THE OPTIMAL LINEARIZED SOLUTIONS. SOLUTIONS WITH A
MINIMAL NUMBER OF IMPULSES. .
In the majority of cases the optimal linearized solution is not unique
but degenerates into a large number of solutions corresponding to the same
characteristic velocity AC.

The degeneracy may concern either the thrust magnitude (magnitude degen-
eracy) alone, or the point of application and the magnitude (spatial degener-
acy), or the number of the turn where the thrust is applied and possibly its
magnitude (temporal degeneracy).

These cases can also show up simultaneously, which leads to a complex
spatio-temporal degeneracy.

Let us recall that, in the case of simple transfers, there is complete
temporal degeneracy, since the optimal thrust can be applied to any turn at
all with possible fractionalization. There is also spatial degeneracy in the
two singular cases of type I bis and III, and magnitude degeneracy for solu-
tions of type II corresponding to Aa = Ae = 0 [types (9), (10), (11), of
Figure II,5 - 1laj. /!

These degenerate cases exist likewise for the rendezvous.
There are two types of temporal degeneracies:

The first kind, which will be ignored, is the following: a thrust at _he

kth turn (different from the first or last) can be partially or completely

decomposed into several thrusts applied at the same place ana in the same

direction, before and after this turn. For example, an impulse AV at the kth

turn can be decomposed into three impulses AV/3 applied respectively to the
& - D K™ and & + D™ turn.

The second type concerns cases where there are several applications of
thrust per turn. It is possible to assign a turn number to each of these

applications, since the numbers of turns obtained in this way are found by a
linear relationship, which yields a certain possibility of choice.

There also exists spatial degeneracies and magnitude degeneracies.
Let us give a few examples of these degeneracies by giving our attention
to solutions with a minimal number of impulses (Figures 11, 12, 13), very

important in practice, which will also permit us to avoid the study of spatio-
temporal degeneracies which are too complex.
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Fig. 11, Minimal Number of Impulses (Aj|>V3|Aet]).
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\ S rpis 11,6.3.1. Type I.

;.éﬂ

The temporal degen-
eracy of the first type
being removed, the solu-
tions are bi-impulsional:

Impulse I'AC, applied

to the k'th turn and
impulse I''AC applied to

the k"th turn (solution
Ak’ Ak"’ if Aa > 0 or

Dk’ Dk" if Aa < 0), with

I+ ['" = 1, produce
the following variations
among others:

Ao=2YANC

kY7o
AT~ 2Y AC [(’-2N}f+

G:
7

&4 "
. (7_ 2 & )I]
Fig. 13. Minimal Number of Impulses (|Aj}-0).
whence:
k1% ,é”j"zﬂ(k A7 N
2 Ao (10)
For a given rendezvous (I', I'' Aa, AT, N fixed), point K of coordinates

k' and k'' can therefore be chosen at liberty on segment PQ (Figure 14). A
degree of liberty remains. There is temporal degeneracy (ot the second type).
Every point M of the region I of the plane Aa, AT can therefore be generally
obtained by an infinity of bi-impulsional solutions. The number of turns
referring to these two very well determined impulses are connected by a linear
relationship.
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KA
N 3
NL_ATNQ
21"( Aa)
K
(- -p —- =
0 _1!_6.~A‘9’) N K’
2I Aa
A7 =-As A9 =+As

Fig. 14. Temporal Degeneracy of the Bi-impulsional Solutions of Type |.

11,6.3.2. Type II. /174
Analogous results are obtained, this time with a solution of types Ak’
Dk" including one acceleration and one deceleration. Equation (10) is
replaced by:
&' T _k"T"= _A_/(]’_I”)(L _A_‘Z")
2 Aa
or again by:
/("(Aa+£]e//)+/(”(Aa’7—Ae//):/V(Aa—A?f)' (11)

(See Figure 15).
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S S
N K’
A3+A8//
A =-Agy AT =-Aa AT =Ag A.7:Ae”

Fig. 15. Temporal Degeneracy of the Bi-impulsional Solutions of Type I1I.

11,6.3.3. Type I11.

In this case,there is a complex spatio-temporal degeneracy.
Let us see under what circumstances the solution can include only two

impulses.

The variations Ae//, Ae,, Aj and consumption AC being given, point G
representing the transfer associated with the rendezvous under consideration
> > >
is situated on a parallel (A) to axis 5%1 (Figure 17) in the axes Oxl, Oyl, Oz1

of Viviani's Window (V) (Figure 16}.
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V//

Fig. 16. Type Il1l. Bi-Impulsional Solutions.

Let V'V'! be one of the two cords of (V) passing through G. To it cor- /176

responds the bi-impulsional solution I'AC, I''AC(I' + I'' = 1) so that:
Aa -z Tz’ +T"2"
‘E— - %16 — 7 7 (12)
A'L’ (7 2k )12 I"z;. (13)

In these equations I', I'', Z'1 and Z"I are fixed by the transfer to be
achieved,
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Let us indeed fix point G by the
51 datum of its cylindrical coordinates

AC =
(A) < ,/'(..3_ ’ 21 —-‘422
V7~— Go V2 in the axes of center o  (Figure 18).
(;1 (ff) Then:
G2
cos B=2_1L_ cos
B 57 @ (14)
ch =X+ @~
— (15)
lo(//= 207 = o ¢ (P_,_p
z]=AC cos [’
(16)
=AC cos [”
Vs 1'=_L L g
2 AC sinp
. (17)
Fig. 17. Section y, = constant. _[//=__Z__ r_Sih g
2 AC sinR

Since the straight line (A) is fixed by the datum of o and r, the para-
meters I', I'', Zi, Zi' depend on the single angular parameter ¢ = (36, gﬁ),
which can be theoretically calculated as a function of Aa by (12) (uwo real
solutions corresponding to the two cords V'V'' passing through G).

Then the results are analogous to those obtained in the study of the bi-
impulsional solutions of Type I and II, with the equations (10) and (11) being
replaced this time, for each of the two bi-impulsional solutions referring to
point G, by:

k'I'z)+ k"1"2 ,"___(J 2+ 1"z )( 7. 4% ) (18)

In regard to the maximal value AT of AT which it is possible to

X ,2
obtain with Aa being fixed, with the aid of only two impulses, two cases are to
be envisaged according to whether the points V' and V'' are both situated in
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- A . . . .
the same semi -space 2, = 72- > 0 [solutions AA, with two accelerating impulses

(Figure 19)] or zy < 0 (solutions DD, with two decelerating impulses), or in
two different semi-spaces (solutions AD with one accelerating and one deceler-

ating impulse, Figure 20).
/177
b

+AC

(c)

0 ,

Fig. 18. Notations. |’/

\'V//
31=0 ) )

Fig. 20. One Accelerating and One
Decelerating Impulse.

31=0

Fig. 19. Two Accelerating Impulses

210



The frontier separating the points G corresponding to each of these cases
is obtained when V' (or V'') coincides with the double point D of (V).

Therefore this frontier is the part of the surface of the circular cone

2 2 2
(F) [xl + (yl - Acmin) -z
inside the volume (V) limited by the smallest convex contour [portions of
cylinders (CI) and (CII)] fitting (V).

= 0] of the peak D based on Viviani's Window (V),

The solutions referring to the two cords V'V'' and (V) passing through G
belonging to the same case.
When point G shifts onto the straight line (A) from GO to G3 (Figure 17),

the two cords V'V'' passing through G evolve in the following manner:
When G is in Go’ they coincide with the degeneratrix V1V2 of the cylinder
€y

1 is one of the two points of inter-

section G1 and Gi, of the cone (I') and of the straight line (A)], they are both

When G is between Go and G1 [where G

situated in the semi-space z, > 0 (case 1).

1

When G is in G,, they coincide with the generatrix DG, of the cone (T).

1 1
When G is between G1 and G3, they both cross the plane zy = 0. (Case 2).
When G is in GS’ they are symmetrical in relation to plane zy = 0.

Let us study cases 1 and 2 in order.
1st case: two accelerating impulses AA (or two decelerating impulses DD).

Point G is situated in the volume represented in Figure 21 or,more exactly,
on the segment GoGl (or GéGi) of Figure 17. Whence the limitation:

lAa \/A e, +

Let us suppose that Aa > 0. As in the study of the bi-impulsional solu-
tions of type I, the maximal value of AT is obtained when the two ‘accelerating
impulses are applied in the first turn (solution AOAO). Equation (13) then

N4

|Z3J| 'z]a
V3

4As ’/,-,,, : (19)

shows that AT .2 = A2 for each of the two bi-impulsional solutions referring

to point G (Figure 23).
énd case: one accelerating impulse A and one decelerating impulse BD.

Point G is situated in the volume represented in Figure 22 or, more
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exactly, on the segment Gl’ Gi of Figure 17, whence the limitation:

AB,I: JA@; 7‘(
As in the study of the bi-impul-

sional solutions of type II, the
maximal value of AT is obtained when
the accelerating impulse I'AC is
applied in the first turn and the
decelerating impulse I''AC in the
last turn. (Solution AODH).

<

lAa

Aell_ I%Ll)z . (20)

For each of the bi-impulsional
solutions referring to point G,
equations (12) and (13) in which

k' = 0 and k'' = N and AT = AT ,
max, 2

furnish a parametric representation
as a function of angle ¢ of the

—~ . .
frontier M1M3, (Figure 23) separating
the solutions of type III with two
impulses (type AODH) or more from

solutions of type III with three im-
pulses (AAD or ADD) or more.
When in Figure 17 G is in Gl’

the two cords V'V" passing through G
coincide with the generatrix DG1

of cone (I'), the two bi-impulsional
solutions referring to G are identi-
cal (point M1 of Figure 23).

When G is in G2, one of the two

cords V'V'' passing through G is the

diagonal V1V3. For the corresponding
Fig. 21. Points Able to be Reached bi-impulsional solution AT 5 =
{th the Aid of Two Accelerating . max, .
wit . = AT.. (actually point g defined in
Impulses. (or Two Decelerating lim
Impulses). Figure 20 is then in G_) and

(21) /181

,Aa|=|A82|=2lA¢//

14/1 72 ] A
(3IAJ'1+\/3‘:A611) <, “
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A more unfavorable bi-impulsional solution (AT < AT.. ), corresponds to
max, 2 1im
the other cord.

When G is in G3, the two cords

passing through G are symmetrical

in relationship to the plane zy = 0.

The corresponding bi-impulsional
solutions give the same point MS'

In conclusion, to each point of
the region OKMlM'MSO, there corre-

sponds a double infinity of bi-

impulsional solutions of type Ak’
3 1

Dk"' In the region MSM MlMM2M3

only one simple infinity of these

solutions corresponds to it.

PARTICULAR CASES.

1. If G Zs on the cylinder (C
AC
(r = 39

the two frontiers M MlMMZMS and

MoMlM'M3 coincide with the segment

MoM4 (limiting case with the solu-

II)

tions of type II).

2. If G is in o, center of circle (C),

(r = 0)
V' ,//’ these two frontiers are composed of
< ’,/” segments MoMl and of the circular
arc M1M2 (Figure 24).

Fig. 22. Points Able to be Reached With
the Help of One Accelerating Impulse 11,6.3.4. Type 1V.

and One Decelerating Impulse.
Now let us take a look at case .

AT > 0.

The accelerating impulses IéAC and Ié'AC applied in the first turn and the
decelerating impulses I&AC, IY'AC applied in the last turn are such that:

N
(.[' I”)—Z)’AC fixed (22)
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Fig. 23. Type Ill. Bi-impulsional Solutions.

From these two last equations are derived:
’ r Y . d
Q+JN_I fixe

]: +]: =1" fixed

(23)

(24)

(25)

(26)

where I' and I'' are the impulse magnitudes corresponding to a simple transfer

of type I where Aa is replaced by AT.
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Fig. 24. Type I11. Bi-impulsional Solutions. Case r = 0.
Equation (22) then shows that Ié + Ié' and Iﬁ + I&' are constants.

The point t of plane Ié, I& (Figure 25) can then be chosen on the fixed
segment JK (J and K are on the periphery OBCE of the rectangle). There is
magnitude degeneracy.

If segment JK is in triangle OBG (or else in CEF), using point J or K
permits the quadri-impulsional solution of type IV to be reduced to a tri-
impulsional solution of type A DDy (or else AOAODN).

If the segment JK is in the parellogram BGEF, the use of point J leads to
a tri-impulsional solution of type AOAODN and the use of point K to a tri-
impulsional solution of type AODNDN.

Finally if the segment JK coincides with BG (or FE), the use of point B
(or E) leads to a bi-impulsional solution of type A Dy

In plane Aa, AT let us seek the frontier curve corresponding to these
bi-impulsional solutions (Figures 11 and 12).
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Fig. 25. Type 1V. Magnitude Degeneracy.

As Ié' = I& = 0 at point E, equations (22 - 24) give:

Azl |1 1v)-|bes sinl
AT | AT siné (27)
or, taking into consideration the study of chapter II,5
4s Sinl|_ \/7_ xri 1
de, sind (28)
Y e
ATZ - Ae//
where x = ————f7  jis the root of the smallest modulus (i.e.here of modu-
Ae//tgél

lus < 1) of the reciprocal second degree equation:

2, AT +A_/ rde,’ —Ae,,

L x+1=0
IA@_L,V T Ae// (29)
which depends only on the parameter operating as a coefficient of x. ]Aal is
minimum
2(4;|Vael + 4/ ZA
(1401, - V2L Vacl 2 4% =207 %)
T ey /
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for 4T =Vse?» 4;% (A%, depending on whether |4/] 2 |£j‘/%i-l ) /183
When |AT| + =, |aa] > IAe//l. Finally, for |AT] = lATllim again we find
|A3l==|Ae,| depending on whether |4; |2 3 lde,l.
VEN
11,6.3.5. Type | bis.

Fig. 26. Type | bis,
Solutions.

Bi-impulsional

of the bi-impulsional solutions.

Here again there is a rather
complex spatial and temporal degen-
eracy. Therefore we shall inter-
est ourselves only in the bi-
impulsional solutions (Figure 26).

There exists an infinity of
bi-impulsional solutions guaran-
tying the transfer Ae//, Ae |,

Aj = 0, |sa] = 2AC. The tangential
impulses AV' and AV'' are such that
the center of gravity of masses

AV' and AV'' placed at application
points M’ and M'’, is in G so that

06=ADe . (30)
3

N

The datum of any cord M'M''
passing through G fixes the rela-
tionship AV''/AV' of the impulses
and therefore the solution.

There is spatial degeneracy

Moreover, once a particular bi-impulsional solution has been chosen there
exists a temporal degeneracy (of the second type) similar to that found in the °
study of type I. [Equation (10)].

11,6.3.6. Type IV bis.

Here there 1is no more temporal degeneracy since, for example if AT > O,
all accelerations are made in the first turn (AO) and all the decelerations in

the last turn (DN).

However there continues to be a spatial degeneracy: the solutions
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Ao and D,, are of the degenerated type I bis and the point M of the segment

AODN

N
is obtained through a linear combination of these two solutions (Figure 9).

Since both points Ao and DN

can be obtained in an infinity
of ways, in particular by bi-
impulsional solutions, point M
can be obtained, in particular,
and in an infinity of ways by
quadri-impulsional solutions or
rather, in a simple or double
infinity of ways by tri-impul-
sional solutions, because of the
magnitude degeneracy already
pointed out for solutions of
type IV (Figure 25).

Point M can even, in certain /184
cases, be obtained by bi-impul-
sional solutions. Actually the

accelerating tangential impulse

KVO, applied in the first turn,
and the decelerating tangential

. > . .
Fig. 27. Type IV bis. Bi-impulsional impulse AVN applied in the last

Solutions. turn (Figure 27), produce the
variations:
Ag=2(Aav, -4V, ) (31)
AT=2(4V, +AV )= 24C (32)
Ae - 24V, O—JE’ZD_ ZAVNMN=2AC 06 (33)

where G is the center of gravity of positive masses AVo placed on M and AV

placed on Mﬁ, symmetrical with MN in relationship to 0.

Since Aa and AT are fixed, equations (31) and (32) furnish the magnitudes
AVO and AVN of the impulses.

Since Ae (therefore G) are fixed, this is a matter of constructing the
cord (s) MéMﬁ passing through G so that:

6\/1{” = A\é :P = fixed ratio.
A, 4v,
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Two cords M _M'. and Monﬁz, symmetrical in relationship to OG, answer

ol N1
the question. Mﬁl and MﬁZ are the intersection points of circle (0) and

circle (C) which is derived from (0) by the similarity of center G and of
relationship p (Figure 28). These points are only real if

lf_p|<0w_—.|§_-}_c_| (77‘P)<7+ID. (35) /185

Fig. 28. Type IV bis. Determination of Application Points of the Two Impulses.

The second inequality
|ZE|<2AC

is automatically satisfied in zone IV bis for:
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lzj@lzzlzl??lﬁm < IA??I=:211C'
The first inequality is also written:
[aa|<|Z2|=|as], . (36)

Therefore there are no bi-impulsional solutions ( one impulse in the first
turn and one impulse in the final turn) except in the belt |Aa| < |aa]
(Figure 13).

lim

I1,6.4. CONCLUSION,

The study of the economical long-duration impulsional rendezvous between
non-co-planar, close, near-circular orbits is derived simply from the study of
the corresponding simple transfers. The accessible domain corresponding to
the characteristic velocity AC is obtained by replacing |Aa] by max(]AaT, [aT])
in the study of simple transfer with

A?:—i _A_r. + 42.

The optimal solution is one of the four types I, I bis, II or III already
found in Chapter II,5, or of two new types: types IV and IV bis.

The minimal number of impulses is equal to 3 or 2 according to the rendez-
vous under consideration.
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CONCLUSION

The analytical study of the optimal transfers between close elliptical /186
orbits is a great deal more delicate for propulsion systems (Sl) with a con-

[

stant ejection velocity and limited thrust than for propulsion systems (Sz)

with variable ejection velocity and limited power where the general analytical
solutions can be obtained. This is due to the fact that the "all or nothing"
optimal thrust law obtained for propulsion systems (Sl) introduces non-linear-

ities even in the linearized study (close orbits).

In spite of the simplifications intreduced by the choice of orbital
elements as state components (which assures a constant adjoint in the linear-
ized study), three essential difficulties continue to exist in the case of
propulsion systems (Sl):

1.Determination of the optimal thrust law, i.e. of the succession of thrust
arcs and ballistic arcs as a function of the a priori fixed adjoint. This
determination is facilitated by the utilization of notions of "efficiency
vector" (indicating the direction of optimal thrust), of "directrix orbit"
(locus of the extremity of the efficiency vector, originally the mobile,
in the absolute axes) and of "efficiency curve" (locus of this extremity
in the turning axes).

i
i
i
L
1

There are no more than three maximal thrust arcs (except for a singular
case) per revolution for a simple transfer. In the singular cases (of the
linearized problem), the optimal thrust law is partially arbritrary
(degeneracy of the solution). Such cases are only found in transfers
between near-circles (eccentricity of the order of the transfer size).

The degeneracy disappears when the study is pursued at higher orders.

2. Integration. Integrating the differential equations producing the varia-
tions in orbital elements in consumption, into which the law of optimal
thrust has been introduced, is delicate. In general the integrals to be
calculated are of the elliptical type or more complicated.

3. Inversion. The a posteriori determination of the adjoint as a function
of the transfer data can generally only be made by successive approxima-
tions. »

These difficulties explain the rareness of general results which it is
possible to obtain. ' .

The phenomena of "induction" (non-imposed variation of certain orbital
elements induced by the imposed variations of the other orbital elements) can, 1
however, be studied in detail.
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The complete analytical solution can be obtained in a certain number of
particular cases, the study of which is complicated as the orbital elements on
which the variation is imposed are more numerous. A certain number of simpli-
fying hypotheses, some of which can be cumulative, should be made by a counter-
part system (great number of revolutions, near-circular orbits, impulses, etc.

I Very fortunately the simplifying hypotheses correspond to very fre-
quent practical cases.

The study of the particular cases shows that the non-modulation of the
ejection velocity, for propulsion systems (Sl) and in relationship to propul-

sion systems (Sz) of the same power, entails a penalty on the mass consumption

of the order of 20 to 30% if the maximal thrust is applied in continuous fash-
ion (system Slc), and a lesser penalty if the (constant) ejection velocity is

optimized (system Si).
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APPENDIX 1

DETERMINATION OF THE OPTIMAL EJECTION VELOCITY FOR A GIVEN
MISSION (SYSTEM S])

(see § 1,2.3.3.)

As it is mf (or, which comes to the same thing _Cf/W) and not -Cf

which must be maximized, it is necessary to use the equations of movement
(1,2 -11) - (I,2 -13) to which must be added:

W=0
expressing the fact that the ejection velocity W is constant.

The useful part of the optimal Hamiltonian is written:

m//ﬁ/_j_npm) o @U/@)Z,XMQ .

where

o= /5]~y (=/77]* )

is the commutation function.

It is important to note that the limit:

depends on the state (by W).

The adjoint component associated with W is given by:

5 OHY_OUM) e Frox d[0U(O)] 59
w oW~ m W 7”7 J0 ow

SU) (28 )  Foe ) (mon).

m we wW?
26,0 U[B) [ mp 2Bpax V[0
mW? ( B —-@}_—_ ,,nnéwz ) /@+foc:)
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Ty

T

and
Py = P, = (6)
since W is indifferent. /192
By integrating f)w from t0 to tf, it then becomes:
73
gm@(@vac)dt:O (7
¢
which is nothing but equation (I,2 -43).
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APPENDIX 2

PERIGEE VECTOR (see § 1,2.4.1.)

A2.1 - LA PLACE'S FIRST INTEGRAL [1] /193

In the central Newtonian field, with center 0 (Figure 1,2 -9), let us

calculate the vectoral product %—?'A h for a Keplerian movement:

LFAT =L GAT =-LAr =L X1Z
7 H r r
or
LFEAR =6V =%
# | (D
Whence, by integrating:
_7_]7/1 /;'_Z =~ constant vector = @& (2)
u r

that is LaPlace's (vectorial) first integral (three first scalar integrals).

Put into the form:

-ZA V'==/1 fz-f'/l-ig— (3)

>

it directly furnishes the hodograph (#') which is deduced from the hodograph

() by rotating —g~ around 0Z. This is a circle with center 1 defined by:

—_—

; e
01—#—h (4
and of radius u/h (Figure 1).

The trajectory (0) is deduced immediately from this for, in every central
acceleration movement, the trajectory (0) and the reversed hodograph (H') are

reciprocal polars in respect to circle (o) of center 0 and of radius vh.

Actually:
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OH.OV'=h =cCte (5

which shows that the tangent MV to the trajectory (0) is nothing but the polar
of point V' in reference to the cirele (o).

The point H, the inverse of V' in reference to (o) describes the circle
(C), inverse of the circle (#’) in reference to (o). Therefore, the straight
line HM encloses the conical (0) of focus 0 and of primncipal circle (C).

On the other hand it is easy to demonstrate that:

18] = e (6)

The constant vector & is therefore directed toward the perigee and has e /194
as its length. We shall call it the "perigee vector'.

Fig. 1.

A2.2 - PERTURBATION OF THE PER[LGEE VECTOR

Let us calculate the derivative of the perigee vector when the mobile ¥

>
is subjected to the perturbating acceleration vy

e L AT LTAT T s T
e——-;/"/\h +-,u—VAh - +r2r
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where:

[—'——.::_g_’f-?:—/l—,%"/'é/
B =FAV
B =FA=FAY
/‘:VT—C—
r
whence:
o [ 7 N Lt Talen )Y Z_’—tf_)
e =[-7§/1(r/ll/)] +—'J<Y/1h +/‘ V/‘(”AX) PRAPT (V -
5 T )Y
therefore /195
y?:?’MUW(?AY’)I %
When the perturbating acceleration is zero (?'= 0), e = 0. The vector o

is then very constant for a Keplerian movement.
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with: a

]

1, n

APPENDIX 3

ELEMENTS OF THE MATRIX K
(see § 1,3.1.4)

1, b="1-e2h="1-¢e?,p=1-¢e2,r=1-¢ecosu
e +0 e =0
Losint =smu sl
h
_75051_ :-EOSZ—e —COSL
285/'/7[_ =2—e-5/'nu 0
b r
25 2
r
bsinl = és/nu sl
b [cosl +casu)=—b— (Zc‘osu—ecosza—e) 2 cosl
r
- -_b ;
beosl =—-= casu—e) ~cos L
r
- a2
bs/n/.fsinu=51”u/€__:,c4__osq e) Zsinl
_2,,+3Meb.$//7L:_2r_/_ﬂ/lesmu _2
3bHM 3.
r
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APPENDIX 4

CANONICAL TRANSFORMATION
(see § 1,3.2.1)

The canonical transformation envisaged is:
——t —_—
[.%, u; P, ¥ )

(—Fvl _17:6 g }_)_t_;’ H) > B or else (1)
. (Z;ﬁ%nf‘Q/E;kn7)tltl; ;ET;FQIAQ:JF%-Iae)

retaining the variables m (or C, or J). The sufficient condition for this
change of variables to be canonical is written:

Blor + B, AV -Hot = P-AX - du = py-dZ +p,da + (
. 2)
p-de +p dt-Hdu.

>

In identifying the terms in dV for dr = 0, dt = 0 (fixwed position and time), we

evidently have:

dX =K-dV (3)
=L a(FAV) =L 2dv 4
dZ_hd/rAV . o)
2
da=2d5=2d(_’f_ _i‘_)=2v-d (5)
2 r
zzzd(m’_f_’):mm VAT = dVAR +VA(FA V) ©
r
dl‘:—g—Mda +Eo?§ (7)
whence: .
=Pk Vb AD "+ B AV Pz ) i
pv-_-P- =2pa’ +hhp. * P, o (8)
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with /200
M o
P, =Rt 5 K (9
P, =R+ AP (10)

These equations coincide with equations (I,3.41-43).
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APPENDIX 5
ELEMENTS OF THE NOMINAL DIRECTRIX ORBIT
(see § 1,3.2.2)

The differences 3K, De and DE have been calculated in § 1,2.4.3 [Equations /201
(1,2.63-65)]

DF =lp-h=p ANV+FAR, (1)
Iy Y AN oy )
De=ep-€ =/DV * —,.7‘-,-3 pV

Do 7 =~ ?'E;
DE=—==Vp, + =5 (3)

with [see § I,3.2.1., equation (1,3.41)]:

A I
P, =2p, V+hip, +/pe/1[/+—/-7——— AF+p, /3MV—2/') - (4)
SN s —

The value of Py = P, calculated on the nominal orbit (0) (i.e. with constant

elements and adjoint) is:

. - = — P—’ —
= r - r - [ v
pV:ZILZ?(——,:?)-F %A/—F/ Ar 'f'/,De/H/ +—/-7—/AV+
1 e
,DT[3V+3M —7"3—)-21/]

Whence, by introducing E: and B:'into (1 - (3):
Dh:,’o'z*/lvaé'A?—pt/v 6)
De = .__P—g_ Ne + VI-e? ,5:/\? (7)
\V7-e2
Da = “u?/%_ (8)

equations which coincide with the equations (1,3.47 - 49).
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APPENDIX 6

ELEMENTS OF THE MATRIX B =
(see § 1,3.2.5)

KK

e*0

=0

(’1—ecosu)5in’u = J—ecosu -cos?u + ecosdu = Pagg (casu)

-biz- casu—e)z//—ecosu) =

.in_e?- e /2*&’):0511 +(/f262)coszu -ecos’u} =Fspy /cosu)
b L )
%51hu[cosa—€)//—€cosu)= sintt @y, (cosu)

4/7+ecosu)=/°,da(casu)

2
4 b cosut = F 44, casu)

sin?l

cos? L

i L cosl

4cosl

4bhsinu =smmu 003/3 /co.s Ll)
~4esin u//—e casu} +6‘M//+ecosu)

bz(/—.?e cos U f3co$eu—ec053u} =P3¢xa,/cosu)

bsinu [—e +/5—e"/cosu— ecos’u]:siﬂl—t Oza/ﬁ /cosu}

4 sinl

6L

7+3cos?L

3sinl cosl

—2//—e2/'sinu //-Ec'asu) + GM//—ez) cos UL

~2sinl + 6L cosL

4—3e‘-—e/2—e’) cosu +/2e’—3} cos2u + ecosdu = P_;/sﬁﬂ:os u}

4 -3cos?L

2\1-¢e* /cosu—e}/l—ecasu)+5M Vi-e? sinu

2ecosl + 6L sinl

4/1— eeasu)s— 72 Me sinu /7-ecosu}' +9M2/7+.ecos u)
L

4+9L%2
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APPENDIX 7

(induction) (see § 1,4.2.2)

-
g

Elements e#0
;ggeém— ® || imax (AL | Ay | da]Aalag fu3§§1°“"
variation’ |?| < of Py
£ S 2 [ o] o] o] o |simLoTest
P Al 2 | // 0] 0] 0 |sinlOTcosL
a 1 1 o] o // 0 [sinLOTeos L
a 3 3 (] 0 0 s{n LOTcos L
B 3 3 0 0 0 0 sin LOTcos L
én (2) (::‘_) 2 0 0 7/ 0 |sinL GeosL
éa 3 3 0 0 {sin LOTcos L
ta 3 3 / 0 0 [stn LOTcos £
éB 3 3 | 0 0 0 / sin LOT cos L
na 3 3 0 /] ] 770 sin LOYcos L
na 3 3 0 0 |sinLOTcos L
nB 3 3 0 0 0 77Tin 0T cos L
aa 3 3 0 0 A// 0 cos L R
afl 3fo0 3 0 0 /// L sin L
af 3lz2] 3 o] o //// sin L& cos L
éna 3fz] 3 ‘///' //// sinL& cos L
o 3|2 3 /A// 7/ sin L& cos L
énB si2| 3 ///// // sin L& cos L
faa 3 3 7 40 // / 0 cos L
éaB 3o 3 // // 7// sin L
£ap JHERZZE N s LG cos i
nea 3 3 o U //// 0 cos L
naf 3]o 3 7 sin L
na8 32| 3 o //’// sin L& cosL
Jﬁ 3(2] 3 1] 0 7 »//VA//slnLG,cosL
Jaa 312 ) 3 / / A slnLa <':osL
_ﬁaﬁ 32 3 ? sin L& cosL
fr]a.ﬁ 3|2 3 / ¥7//7// sin LG cos L
£aaf 3laf 3 ] stn L& cos L
_ﬂﬁ 3(2 3 / / /// sinL & cos L
énaaB 312 3 /// 1 # sin L& cos L

NNNNMNNNNNNNNNNNNNMN.NNNNM‘MNNHNN//\

¢1aﬁ$es
YPIERT Ese
22; C x
2?1__ x
zZ/
’///_ x
;9, .
/ 7 x
/// x
,
B
7/
2§/,,
7/
7/
%
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APPENDIX -8

ELEMENTS OF THE MATRIX G = fo Bdu (System 52)
(see § !,3.9

S -
e+ 0 e=0
G U _sintlcostd _ € .3 “p'ne 7 [L L L]L, /207
U _3nUcosSk € .34 —1L~sinl cos
& [5-% 3 ]“. 2 .
Uy I3
| _Ire? £ (053 z ?1_] ’
Gfp Vi—e? [etosu % cos?u ¥+ 3 cos u]u Z [cas A
1 (1+4e? 1+e? v e “ 14 i
+2e” - 2} 4, » £ sin? S| L +sinl L
G,)p I—e'[ 2 u e/3*9)-'~uf' 2 :r/ucosu+3:m u]u' 2[ +sinl cos ]L.
up L,
4 [u sesinu 4|L
Gsa ” ]u. [ ]1.,
¢ “y L
4 (1-e* ; 4 |sinl
ao ( e )[:mu]u' [ ]L.
w, Le
Gaﬂ ~4Vi-e? [casu]u- -4[:05 L]L‘
u; _____ N o a A i ‘l-f
Gar [3u'¢5eu:inu #16e cosu —e’;/‘n’u] ~ 3Au* [3L']
u,Bu—~oo ¢,
- : [ N [
5 3 “r p Ly
Gooe (7-e?) [—u—4eainu +5 sintcosu +£sin’u] -—{SL f35/nLcasL]
2 2 3 . 2 L.
3-e* “ Lte
(J‘aﬁ VI-e*? [ecosu - 2 cos?u +§co:3u]“‘ ——[cas’L]Lo
) e T 3
Ga’r 2//—92) [Ju:inu 'I‘4casl,l—e.rir1)u] A Norder Au [6/_ sinl # ECasL}
ul U —r o2 L'
- } I
5-4e* 3-2e? e “ 1 , L
Gﬁﬁ [-———-—u-—e(l—e’)sinu— sinu costt - =sin U —2—[5L-3:mL cosl
2 2 3 . .,
o _ ~ ‘;’ o o
2\f1-¢* [—Seu ~3uecosu +{4+e’) sinu + & snl cos u] L
GﬁT “o [—SLcosL +8:inL]
~order 4, .
A —+ oo
{3u’ +9eutsinu +u [4+48ecosu + 18e2-3e%sin?u) - Ly
Grey - ur [3L’+4L]
508:inu—6e’:inuzosu+e’(—"”—”——4)smu ~ 3au? Ly
3 « Au— oo
*

237

all



APPENDIX 9
DIAGONAL OF THE MATRIX G [system (S,)]

(see § 1,4.1.2)

It is enough to consider the plane case. Then let us posit:

Aa
Ao

AX = Aﬁ (1)
AT

We propose to take Arl as the fourth variation instead of At so as to

diagonalize the matrix G. If:
Aa
Do
A%, =1 AB 2)
Az,

designates the new variation of the kinematic state, this is the same as
carrying out the linear transformation:

AX =AAX (3)
where A is a matrix of the form:
7 O 0 0
a0 1 0 0 @)
o 0 1 0
£ m n kK

Since consumption AJ is an invariant, A must be such that:
T -1 T -1
AX] G A%, =AxT67 A% (5)

no matter what AX may be. From this identity we derive:
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Gas 0 0 €635 +kGst
0 Garar 0 mé‘a'ar‘/‘kco(r
0 o Gpap nGpp +kGat
2 (G5 +k6
G,=AGA = (£6a0 +kar)
+m[m6af¢ “/"Ga'r) (6)
£6aa+kGar | mMGoar #hGar | nGpp +kGpr | +n(nGpp+kGpe)
+k(€Gar +mGyr
+f76/3r +k62‘l—
_ i ¢ +hGer)

This matrix can be diagonalized by choosing A so that:

P =—k ot (7) /210
Gas
Got
Goa (8)
n=—kK G/:’r
Gﬁﬁ (9)
Then:
Gar: Gar Gart
G :k2 G . aT _ aT _ ﬁf

Therefore a degree of freedom still exists in the choice of A (parameter
k). The change of the variable is written:

At, =4 [AT-At, ) n

where: p
6
Att.s=-65'—t Aa + %L Aa*+£A/3
Gaa Caa 68 (12)

is nothing but the variation of t in the simple transfer (achieved in the opti-
mal way) corresponding to the rendezvous under consideration, <nduced by the
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variatons of a, a and B. In the case of simple transfer let us actually posit:

Aa
AO = Ao . . .
= (fixed since Aa, Aa, AR are given) (13)

AB
0

The adjoint referring to the simple transfer is, on the other hand:

pt.s. = [:/Da'é.s‘ 3 pa,’t.s. ’ pﬁ; t.s. ! 0] (14)

Then equation (I,3 - 66) is written:

: T
AX,  =A0+ Q4T s =GFy s, (15)
where Q is the matrix:
0
_t 0
Q= 0 (16)
7
In simple transfer, ATt s and Pt s must be considered as unknowns to be /211

calculated as a function of the transfer AO.

These quantities are given by the matrix equation:

6P~ QAT =5 [P, + 08T, 5] =40 a7
where S is the matrix: -
Gaa| ©
o |6
7= e (18)
0| 9 |Gpp| ©
68'[ GG’T 6/37_' "

Whence:

(19)
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with

1
-—1 0 0 0
baq
o |-l ol o
57 Gaa
1 (20)

0 0 27—* 0

|98
Gor|GarGaz|
Gaa Gaa 6/3/3

Art s is given very well by expression (12).

If k is taken as equal to unity, ATl then represents the necessary supple-

ment to assure rendezvous.

The supplementary term AJ1 being introduced into AJ is equal to:

2
Ao = Bt

1 261z-z- (21)

In the case of large number of turns (N >> 1), G~ 3hu3, G, ™ -3Au?,

G and G = order Au, therefore G, ~ é—AuS and:
oT Bt 1 4
2487?
8 = Fhu =
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APPENDIX 10

INFINITESIMAL ROTATION OF THE PLANE OF THE ORBIT
SYSTEM S, (W = ct®, F < F___, CONTINUOUS THRUST)
C — max

(see § 11,2.3.2.2)

e=0 o=8 N =Iv|=2=0637,

e=01]ac| & [IAl=14 e=0,2ac| & |[|Al=]v] e=03ac]| & (A=
0] 0 0.650 ol o 0.690 ol o 0.756
10 | 9040 | 0.649 10] 843'| 0.688 10| 724 0.755
20 {1922 | 0.648 20| 17235 | 0.682 20 | 1456 | 0.746
30 {2909’ | 0.646 30 { 26042’ | 0.676 30| 2301 | 0.735
40 | 3901 | 0.645 40| 36011 | 0.669 2 |3149'| 0.716
50 {1901" | 0.642 50| 4607'| 0.660 50| 4131"| 0.695
60 | 5%08" | 0.640 0 | 5632’ 0.651 0| 5216'| 0.674
70 | 69021 | 0.639 70| 67024’ | 0.643 70 | 6405'| 0.655
80 {7939’ { 0.637 80 | 78°36’| 0.640 80 | 762 47" | 0.642
90 | 900 0.637 90 |90° | 0.637 90|90 | 0.637

e=041 5] ¢ 0860 | €=%°[ o] o 1.005 =065l 0. | 1212
10| %45 0.855 10| 210 1.00 10| 245 | 1.205
2 | 11051"] 0.845 20| & 45| 0.985 20| %55 1.19
20 | 18038’ | 0.825 30 | 1405 | 0.959 01 %53 1.155
40| 26025 | 0.794 40| 20°39'| 0.915 [ 15%07’| 1.10
50 {35%36'] 0.756 50 | 28°55' | 0.856 502210 1.017
& |40 2'| 0.715 & | 3932 | 0.786 €0 | 31055’ | 0.905
70 | 59021' | 0.676 70| 5312’} 0.715 70 | 4% 43| 0.784
80 | 74004’ | 0.648 80 | 700 18’ | 0.660 80 | 65 12"} 0.680
90900 | 0.637 190]90e | o0.637 90|90 | 0.637

“=071%6T o 1501 ¢ %[00 2.02 e=0.9 0 3.10
0| 135 1.515 10| 0044'| 2.02 10] 0012 3.10
20| ®34'| 1.498 20| 1047 | 2.005 20| 0037'] 3.09
0| @18 1460 0| 23| 1.96 20| 128" 3.04
40 | 100147 | 1.389 0| e127] 1.86 01 3024 2.91
50 [1% 53| 1.270 50 {10023’ | 1.701 0| 5417 2.68
& | 24013’ | 1.105 60| 1653 | 1.461 0| 9058 2.26
70 | 37008’ | 0.908 70 | 27046 | 1.142 70 | 17035'| 1.701
80 | 58019’ | 0.721 80 | 48053 | 0.810 80 | 35008’ | 1.05
90 | 900 0.637 90 | 900 | 0.637 90 |90 | 0.637
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APPENDIX 11

OPTIMAL ROTATION OF THE PLANE OF AN ORBIT WITH WEAK
ECCENTRICITY (see § 11,2.3.2.2)

ZONE 2 - TWO THRUST ZONES.
0<s5s <71-¢ co5 «.

Taking e as an infinitely small principal and noticing that s ; 1 (unless

o = %), it becomes:

. 1/2 2 7/2
J‘/ﬂﬁ’:(f—[ﬁfzﬂ’) = [7-(@ cosxX +5) ] =
e? cos’ox 4 orderg?

75t eS8 X
V7-s52  2(7-5%)V7-5*

Sin 7= (1-cos3") " = E— (¢ cos o - o’)ﬂ 7=

2 2
e oS A 4 order e’

V7-s52, 85 o5

V7-s2  2(7-5s%*)\V7-52

2
sinf3'+sinf3’=2Y7-5%_ e’ cos sorder ¢*
2(7-5%) V 7-5*
sin - sinf3’=_ £ €5 605X , order ¢’
Vii-s?
and, by Taylor's formula:
2 2 3
B'=Arc f/ﬂ(V J-s2 _ e Sscosx e s X _order €| =
V7-s? 2(7-52)V7-s?
2 2
Arc cos s_ & C05 & e s s < + order e’

Vi-57 2(1-59) V7-52

(1)

(2)

/215

(3

(4)

(5)

(6)
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and by changing s into -s:

2 2 '

752 2(7-53)VT-5° 7
whence:
/31+/3//_ =~ 2e¢ o5 + order g3
V7i-s2 (8)
S+ -f7= 2 Arc cos 5. €S @S®X _ order ¢4 9
(7-52)V7-s?

On the other hand:

sin 2 B+ sin 23%= 4 e cos <><V7/“L__522 + ordere’. (10)
-5

Introducing all these values into (II,2. 24-26), it becomes:

A= Bn  _ 4VY7-5* cosx 2e¢®
T T [ VTsE

coSs °((6 4 5 60.5‘ =4 ;J_‘;;ij:fls;l’ ..)./. order 23] (11)
- S

A 4% =_7 [4\/7—525/'/70(_ 2e’
2

¥ oW £, V7-5* (12)
sinecostoq 3-652*45* sorder €?
7-52

Ac.:.. W/Am/:l_ 4 Arc 5055+A(h2522z cos 2o 4 order g7 (13)
NI E 2T (7-52)V7-52

[Aj] 4\[7-524 2465+ 5% 22055204 (idore?
T2NTE erl: (7-53)V7-5° ' oo

max
In (13) and (14), o can be replaced by its value for e = 0, that is to
say by §. We can then derive s from (14):
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e e

z4+42%-7 229524 + order 23) (15)

—_— - € 7 - ——
s=V7-2z +222(7_22)

with /217
7 A
Z =
2 (16)
and introducing this value into (13) it becomes:
2(7+32%) 62605‘25+0rd'ere3:| (a7)

=7 | 4 Arc sin z_
Ao 277[ zV7-2z*7

whence the specific rotation:

2
7+ 3z ezCﬂ.der'/' ordere"f (18)

v 4l 2z, 7e3zF
Widm| Arcsinz = 4&(Arc sinz)*\/T-2z%

This formula directly gives the specific rotation as a function of the
rotation to be achieved, of the number of turns permitted and of the maximal

thrust with rather close precision when the eccentricity is weak.

Condition (1) is also written:
(19)

S<7_ e cosr § + ordere?.

We shall demonstrate that then:
7> Ve cos § + order o 3/2, (20)

When we approach the frontier (I''), z diminishes and becomes on the order

of e1/2. Formula (18) then shows that the second term of the development is

of the order e2/zz, i.e. of the order e and not of the order e

2 and not of e4.

The error is then of the order of e
it will be enough to develop as far as

The result is that, beyond (T'),
the terms in e (error of the order of ez) without precision being less than

that obtained by (18) in the vicinity of (I'').

2. A SINGLE THRUST ZONE.

So that there may be only one thrust zone, it is both necessary and
245



sufficient for:

/- e cos x<s LT+ e cos X

o 1T (21)
2

Then let us posit:

S=7+k e cos (22)
with:
_7<k 7
(23)
k replaces the parameter.
Then it becomes:
(24)

cosB7= e cosx-s=-T+(7-k)e cos

sinfB7=\| 2(7-k)cos ”Zeﬂ/z_L 2(7-k)coso 3/223/‘% ordere /% (25)
A 8

m-f"=12(7-k) cajo] Vi +_7._I:2(7—/<)caf o(] Y2 ¢ 32 4 oraerg 5/2 (26)
24

5/'}7 2/3”:_2[2[7—,4) cos <><:J1/Ze’/2+ord'er e ¥/? (27) /218
12
No=_4n __=1 2co5 x| 2(7~k)cos<| e?»
7 2NmE,,, 2mVi-c? (28)
[2(7 /()C‘OJ“O] (jfk cos o(+7) 2 order e /}
1/2
A=_4% 2sino |2(1-k)cose| ey
¥ 2NTE,, 277 (29)

[2(7 k)eos o(] S+K_ it o cos o @324 order c5/2}
T4
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eSS

12
=1 32V 2(7-k)cos
ax (30)

(e 2, Z+K o5 o ¢+ order @ 5/2)
4

72
A= Wldml _ 7 |2 2(7—k)ca:o< e 4
2NTTF, ., 21

(31)
. vz
13-k ¢cos o([Zﬁ—k)myoE] ¢ %% 4 order ’/2}
&
J = 14/ A _ 7,Kk+2 & cos x »order e? (32)
Wiiml - ), 3 .
05 8= cos o + @ s/into + order g2 (33)

In the second term of (32), it is enough to introduce the values a and k
derived from (30) and (33) where only the first term of development is main-

tained:
a =8 . (34)
fo 7 _TTIAT (35)
2e cosd
whence:
V=7recosd_ _71;;2\_2_ » orderg? (36)

This is a formula to be compared with (18).

The points of the frontier (T'') correspond to k = -1 or, by (35):

z=TTA _Ve cos § +order ¥2 (37)

o
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Introducing these into (18) and (36), we obtain the same development:

V(ﬁ'): 7+.E{§E;é + ordere?. (38)

In the particular case of the circle, expression of the specific rotation
is very simple:

7
) = A .
v 14/ __2 where A= _ 140l (39)
Widm] Are ;/n(zﬂ A) 2NTF,
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APPENDIX 12

TRANSFER BETWEEN CIRCLES -"SYSTEM (Sl)
(see § 11,3.3.2)

/221

l’s
w2
212
]
£
= 2L g=-oco o ) g=+c0 L
2 ~~_(RQ) SR
E
5 9y
a
Q
L
S 1
o
[72]
|| 180° | 360° 540° 720°
A f 3 ~5 K .
2Arc cos- L / 2Arccos (——Z-)
\/?_ZArccas—L 3
AL 3 TRANSFER ANGLE AL (DEGREES)

Fig. 1. Iso-q (qualitative) Lines (System S]).

1. [0 <ar <2 ]

SOLUTIONS CORRESPONDING TO A PARTICULAR VALUE OF gq(Figure 1).

For a value of -V3/2 < q < 0, there is no solution for (II,3 -41) cannot
be satisfied.

For q = -V3/2 (Figure 2a), there is only one bi-impulsional solution
corresponding to the point X, =X = 1/V/3, i.e. to the transfer angle

AL = 2 Arc cos L. 109° 28'.
V3
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oo
\ _,i/,
320 .
N\,
\
Ro’f\\“
STINE| D X
a
@)

@

250

fu(X)

4 feo
e
) '
. b
©)
X
e
I
a:g=—/3/2
b: Tim <7 <— 23
Fig. 2. Solutions Corre- cig=gy
sponding to an Identical d:-1<q<qy,
Orientation of (same value e ge—1
of qj. f:9<~1
gigr—~w




HE -

For Ajp <@ < ~-V3/2 (Figure 2b), there is an infinity of solutions

corresponding to different values of the transfer .angle and of the ratio
|X1| = ]AaI/Fmax. These solutions can be followed-by continuity when the

transfer angle varies, from the bi-impulsional—sodmtien (QP) by go%ng through
an entire gamut of solutions with two thrust arcs.__Tt-will be noticed that /223
among these solutions there is no solution where thrust—is—applied constantly.

For q = 93m (Figure 2c¢), there appears one solution where—thrust is

applied constantly which we shall call the "continuous thrust'" solution.
For -1 < q < Q; (Figure 2d), there are two "continuous thrust' solutions.
im

For q = -1 (Figure 2e), the bi-impulsional solution is unique and corre-
sponds to x = 1/3 or

AL = 2 Arc cos %—= 141°04°'.

The "continuous thrust" solution is unique and corresponds to X, = -1/3
or

AL = 2 Arc cos (-1/3) = 218°56"'.

For q < -1 (Figure 2f), the bi-impulsional solution and the 'continuous
thrust'" solution are unique.

When q » -~ (Figure 2g), we obtain by continuity,a bi-impulsional Hohmann
solution (AL = 180°), solutions of the 'Hohmann type" including two symmetrical
thrust arcs with reference to 0,and finally a "continuous thrust' solution
corresponding to one revolution (AL = 360°).

We have seen that actually, for P, =0, p, = -1/2 and therefore q = -,
the solution is singular and cannot be obtained by the preceding method. The
solutions obtained above form part of a larger family of solutions.

SOLUTIONS CORRESPONDING TO A PARTICULAR VALUE OF AL.

The preceding results can be presented in a different manner, more con-
formable to the practice where the transfer angle is fixed.

Let there be a transfer angle to be achieved with transfer AL given
(0 < AL < 2m). The abscissa X, of Figure 11,3 - 12 is fixed.

In general there is an infinity of solutions, corresponding to the dif-
ferent values of q (therefore of x,) and of the relationship |A1l = |Aal/Fmax.
By AL let us designate the transfer angle corresponding to an intersection of

the locus (L) of the maxima and minima of f(x) with Bx (Figure 11,3 - 11).
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Fig. 4. 2m < AL < 4n. Solutions Corresponding to a Tangential Thrust (q + + =)
a: Type of Solutions; b: RQ Solutions; c: R(QP) Solutions; d: RP Solutions.
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If 0 < AL < 2 Arc cosjé = 109°28' (Figure 3a), and when q decreases, we
3
pass successively from the bi-impulsional solutiofi (QP) (q = q; < -/3/2) to

solutions with two thrust arcs (QP) (q = dp3 Qz < 9y < ql), then to the
solution "(QP) (q = Q35 -1 < qz < qlim)'

If 2 Arc cos - < AL < AL (Figure 3b).
%3

Beginning with the bi-impulsional solution (RQ) (q= ql) we find solutions
with two thrust arcs of the type (RQ) (q = dys 9 < qy < q3) then of type (RP)
(q = a3 q; <9 < 93 ) and finally of the type (QP) (q = qg; qg < qg < 9)-
The "continuous thrust'" solution (QP) is obtained for q qg-

If AL < AL < m (Figure 3c).

Beginning with the bi-impulsional solution (RQ) (q

ql) we find solutions
with two thrust arcs of the type (RQ) (q = 45 q; < Ay < qS)’ then of the type
(RPY(q = Qs dg < Ay < qs), and finally the "continuous thrust' solution (RP)
(q = q5). This case does not essentially differ from the preceding case,

except by the fact that we do not find a solution of the type (QP).

If m < AL < Arc cos (-1/3) (Figure 3d).

For q - -, we find the "Hohmann typa' solution (RQ). But this is only
one solution among all the possible solutions (degeneracy). /227

Then appear solutions with two thrust arcs of the type (RQ) for q = a
(-= < qq < q,), then of the type (RP) for q = Az (q4 <4z <4y, and finally
the '"continuous thrust" solution (RP)for (q = q4).

If 2 Arc cos (-1/3) < AL < 2n (Figure 3e).

Only solutions of the type (RQ) are presented for -« < q; < ay < -1.

2. [?{(Az < 47|

SOLUTIONS CORRESPONDING TO A PARTICULAR VALUE OF q and to different values of
the transfer angle AL and of the relationship |A1T = lAaI/Fmax.

Let us begin with the case q + + ». We shall obtain solutions taking part
in the totality of singular solutions referring to the degenerated problem
(Figure 4a). The turve 2f+w(x) is an elliptical arc transformed by affinity

with the arc of circle f+w(x).
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The angles L, and L, are connected by:
sin LO = 2 sin Ll' n
The solutions of the type (RQ) (Figure 4b), [R(QP)] (Figure 4c) and (RP)

(Figure 4d) are arranged in a series from the "continuous thrust" solution on
one revolution RQ = 0 (AL = 2w) up to the '"continuous thrust" solution on two

revolutions (RP) (AL = 47).

For q > ap (Figure 5), the solutions are also of the type (RQ) and (RP)
with two "continuous thrust' solutions.

For q = q; (Figure 6), there is a single solution [R(QP)] corresponding
to '"continuous thrust”.
3. FOR v <ar<aimer)r],

q is 2 0 depending on whether N is {ngn and there are N + 2 thrust arcs.

For q = 4=, the generalizing condition (1) is:

sin LO = (N + 1) sin Ll'
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APPENDIX 13

OPTIMAL |IMPULSIONAL TRANSFERS BETWEENZCILOSE, NEAR-CIRCULAR
ORBITS, CO-PLANAR OR NOT (see Chapter. 1I,5)

1. TYPE | (Bi-impulsional). 7229
Let us take the axis of reference Ox according to 5; . The impulses I'AC
and I''AC(I' + I'' = 1) applied to points M'(L') and M’'(L'' = -L')cause the
variations:
-
A¥=2"sinl’AC
Ap=—7'cos L (I17) AC
L pg=2Y'AC (1)
Aox=(X'sinl’ +2Y cosL’) AC
LAﬂ:(ZX%WfF+2Y2wh[7ﬁP—]UA€
We shall suppose that sin L' > 0 for the impulse I'AC.
From these equations it is easy to deduce the equations (II,5. 5-9).
Therefore the optimal thrust law is expressed as a function of the trans-
fer parameters (Z?, Ae//, Ae,, Aa) and of 6 and AC, which are unknown for the
moment. In order to determine these two unknowns, we have two equations
available:
The first expresses the fact that X', Y', Z' are guiding cosines:
Py )
The second connects X', Y', Z' and the position L'.
12 2 )2
- 7‘y = X +Z . (3)

lg L
X'y 2X'y’
This last equation is obtained geometrically in the following way (Figure

1).
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Fig. 1.

Let P(X,Y,Z) be one of the contact points of the ellipse (P) of the sphere
(£). The tangent TP in P to (P) is the intersection of the plane (w) of

(P), defined by the point P and the axis ﬁ?, and of the plane tangent in P to
(£}, defined by P and its course QT in the plane Z = 0. Therefore the straight

line TP is tangent to the projection (P) of (P) on the plane Z = 0. The
ellipse (P) is unique and well determined, by the datum of its major axis ﬁ?,
its eccentricity e = Y3/2 and its tangent TP in P. By an orthogonal affinity
of axis MY and of equation 2, (P) is actually transformed into a circle (C),
centered on ﬁ? and tangent in C to +E. This circle is unique and centered in /230
w.
PP is the polar of Q in reference to the major circle (22) of (Z), there-
fore QT is the polar of P in reference to the major circle (Z]) of () , and

finally PH is the polar of t in reference to (Zl), and therefore: MH . MT = 1

Whence:
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HC HC 2X 2XY

Introducing the values of X', Y' and L' into=(3), we derive

z._
cotg( L 1)=tg1 = HT _ MT-MH _ v =Y _ 7-¥?

tgs=Ael- $Aa7 40 @
A@// AZ_L

as a function of the

consumption AC, the latter being itself furnished by the
biquadratic equation:

[‘(___AzjfgﬁatACZ)(Aei,LAj{LATé"“_ACZ),cAei(Ae;_Aaz)=0 (5)

obtained by introducing the values .of X', Y' and Z' into equation (2). /231
tg § can also be derived directly from the second degree equation (II,5-4).

The inequalities (II1,5-6) are satisfied if:

Aei < Aa’ (6)

The solutions of type I correspond to points of the plane Ae//Ae_L in the
interior of the belt |Ae//| < |aa| (Figure 2).

The inequalities (II,5-5) are satisfied if:

ty?dy A3’ _1=1{(95"tgd" >0
Ae} .

(7)
where tgé’ and tgs’' are the roots of (II,5-4).

Therefore it is necessary that the square of the root (I1,5-4) adopted be
superior or equal to the products of the roots. This is possible for only a
single root of this equation, the one of which the modulus is maximal.

As the numerator of the expression (4) of tgs§ is negative (for

2 2>_Aaz
Yi<1=>ac2 > 492 )

’

this condition shows that the consumption AC is given by the greatest of the
roots of the biquadratic equation (5).

Finally, the useful angle condition
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P4 »\/:?—l/\’l :

(8
is written in the limiting case
lde,|| ¢96] = V3 (Aei-A05%)
| 47| -\/3_|Aeil
or, by introduction into (4)
(IA_‘/F/.__I_'AQL)(\/?‘A‘] " Aei)'er;_Aaz
or even: '
Ae,,z/ Ae, ,JA_JI):i 4%+ Aa.
gl 02 ) =4 ©

The frontier in the plane Ae//Ael is formed by the circle arcs (o+) and
(0-). It is easily verified that the origin O(Ae// = Ae, = 0) satisfies the
inequality (8) and therefore corresponds to solutions of type I.

2. TYPE Il (nodal bi-impulsional).
Let us take the reference axis Ox according to the nodal line. The

impulses I'AC and I''AC(I' + I'' = 1) applied to points M'(L' = 0) and
‘M'"(L''" = 1) causes the variations:

)
Ag =0
Ag =—,A_jl =-Z’AC

Na=2Y' (I-T")AC (10)

AO(:A@//: 2Y’AC

~

Whence the relations (II,5. 11-14).

The inequalities (II,5 - 11) are satisfied if

Ae, » Az (11)
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Fig. 2. Determination of the Type of Transfer.
a: General case; b: Aa = 0; c: Aj > O.
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The solutions of type II correspond to points of the plane Ae//Ael
located necessarily outside of the belt IAe//] < |aa] (Figure 2).

The useful angle condition (8) is written here:

|ae.| < l_%/___’_ (12)

Therefore the point Ae//Ae_L is inside the belt defined by (12).

Finally writing that X'Y'Z' are guiding cosines, (X'2 F Y1l Z'2 = 1),
we obtain the consumption
2 .
des , Aety Aj2= AC? (13)
4
3. TYPE Il (Singular, three-dimensional).

In order that G may be inside the volume (V) limited by the cylinders (CI)
and CII)’ it is necessary for W (projection of G on the plane z, = 0) (Figure

IT1,5 - 12) to be inside circle (C), or:

A§'2+Ay2;7‘/§ AraczAJ"r\_/}_iLTj:.ﬁ’<o ()
and that U (projection of G on plane X, = 0) be situated in the concave part

of the parabola (P):

2 2 _ 2 52
zia \<AC+27 A¥AC=Ac r% 4/, . Ac (15)
in the region:
=*_ 2 A¢=374].4C 0. (16)
e T

Let us multiply the vectorial equation (II,5 - 19) by K?lz
4j,. Ae i\/.?zlj',z:ljj_';lAel;\/;A—j;zz.M_?.E. (17)

Introducing this value of iC. Z?l into inequality (14) it becomes:
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N

V3 de > |4 >0 (18)
therefore, at first,
(19)

Lr =-syrn Ade

which permits a choice to be made between the orientations (n+) and (v ), then:
IAZ_L| 2 IA-/_I (20)
V3
In the plane Ae//AeL, the solutions of type III correspond to points /234
necessarily outside of the belt
,Ajl (Figure 2).
V3

The consumption AC is obtained by raising the vectorial equation (II,5-19)

'A¢.Ll <

to the square

Acto Aek +(/Aei/v;\/§/llj/)2 (21)

Finally introducing the calculated values of K?l, KE and of AC2 into (15),

this inequality becomes:

(,Aei,ﬂ/o’—[A?)])ﬂAei[ _ M%’)} Aa’_ Ae’

(22)

Again we find frontier (9).

4. MONO-IMPULSIONAL SOLUTIONS.

So that the preceding study, dedicated to multi-impulsional cases,
also covers the totality of impulsional solutions, it is enough to demonstrate
that any mono-impulsional solution at all can always be considered as a limit-
ing case of a bi-impulsional solution when one of the two impulses becomes 0.

Let MP be any mono-impulsional solution (Figure 3).

The corresponding ellipse (P) is inside the sphere (Z) and tangent to this /235
sphere in P. The ellipse (P), a projection of (P) on plane Z = 0, is inside
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the ellipse (PIII), a projection on z = 0 of the circles (C+) and (C7) (a

condition imposed by the "useful dihedral').

Fig. 3.

In general there exist two "efficiency" ellipses (PI) and (PII), inter-
iorly bi-tangent to (Z'), one of the contact points being P, referring to
solutions respectively of type I and type II.

The projection of (PI) on the plane Z = 0 is the ellipse (PI)(§-= %J of
major axis ﬁ?, tangent in P to the straight line PTI. The cylinder (GI) is
therefore well determined. Moreover, (PI) is contained in the plane (ﬂI)

passing through M and P. It is tangent to the straight line PT. in P.

I
The projection of (PII) on plane z = 0 is the ellipse (PII)(§'= %J of
++

major axis M and of minor axis MX, passing through point P. Therefore the
cylinder (OII) is well determined. (PII) is contained in the plane (“II)
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passing through P and MTII' It is tangent to the straight line PTII in F.

Thus, every mono-impulsional solution can be considered as a limiting case
either of a bi-impulsional solution of type I,.or of a bi-impulsional solution
of type II, when one of the two impulses becomes 0. (Circle arc PN of
Figure I1,5 - 11b).

When point P of Figure 3 is on pIII’ the two efficiency curves (PI) and

(PII) coincide with one of the circles (C+) or (C'). The impulsional solution

[one impulse in one of the planes (n+) or (1)} can then be considered as the
limiting case of solutions of type I, II or III ("triple" point N of Figure
11,5 - 11b).

In particular point R (or S) corresponds to the mono-impulsional tangent
solutions (circle arc F2M2 of Figure II,5 - 1lc).
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